Chemical cross-linking is the standard approach to tune the mechanical properties of polymer coatings for cell culture applications. Here we show that the elastic modulus of highly swollen polyelectrolyte films composed of poly(L-lysine) (PLL) and hyaluronic acid (HA) can be changed by more than 1 order of magnitude by addition of gold nanoparticles (AuNPs) in a one-step procedure. This hydrogel-nanoparticle architecture has great potential as a platform for advanced cell engineering application, for example remote release of drugs. As a first step toward utilization of such films for biomedical applications we identify the most favorable polymer/nanoparticle composition for optimized cell adhesion on the films. Using atomic force microscopy (AFM) we determine the following surface parameters that are relevant for cell adhesion, i.e., stiffness, roughness, and protein interactions. Optimized cell adhesion is observed for films with an elastic modulus of about 1 MPa and a surface roughness on the order of 30 nm. The analysis further shows that AuNPs are not incorporated in the HA/PLL bulk but form clusters on the film surface. Combined studies of the elastic modulus and surface topography indicate a cluster percolation threshold at a critical surface coverage above which the film stiffness drastically increases. In this context we also discuss changes in film thickness, material density and swelling ratio due to nanoparticle treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la300635zDOI Listing

Publication Analysis

Top Keywords

cell adhesion
16
elastic modulus
12
polyelectrolyte films
8
optimized cell
8
films
5
cell
5
surface
5
control cell
4
adhesion
4
adhesion mechanical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!