In order to accelerate the NO removal efficiency, a novel and effective system was developed for the complete treatment of NO from flue gases. The system features NO absorption by Fe(II) (EDTA) and biological denitrification in a rotating drum biofilter (RDB) so as to promote biological reduction. The experimental results show that a moderate amount of Fe(II) (EDTA) was added to the nutrient solution to improve the mass transfer efficiency of NO from gas to liquid, with the concomitant formation of nitrosyl complex Fe(II) (EDTA)-NO. Under the experimental conditions of rotational speed was at 0.5 r x min(-1), EBRT of 57.7 s, temperature was at 30 degrees C, pH was 7-8, with the increasing concentration of Fe(II) (EDTA) was from 0 mg x L(-1) to 500 mg x L(-1), the NO removal efficiency was improved from 61.1% to 97.6%, and the elimination capacity was from 16.2 g (m3 x h)(-1) to 26.7 g (m3 x h)(-1). In order to simulate the denitrifying process of waste gas containing NO by using RDB coupled with Fe(II) (EDTA) absorption, a tie-in equation of NO removal and the Fe(II) (EDTA) concentration added in RDB was established. The experimental NO removal efficiency change tendency agrees fairly with that predicted by the proposed equation.

Download full-text PDF

Source

Publication Analysis

Top Keywords

feii edta
20
removal efficiency
12
rotating drum
8
drum biofilter
8
absorption feii
8
feii
7
removal
5
edta
5
[investigation process
4
process nitric
4

Similar Publications

Ferrous oxalate (FeCO)-based composite has been recognized as an eminent catalyst for Cr(III)-ethylenediamine tetraacetic acid (Cr(III)-EDTA) decomplexation. However, their practical application has been limited by low cycling capacity and an ambiguous mechanism. In this research, a composite catalyst consisting of biotite loaded with nano FeCO (CFS90) was prepared directly from iron-containing silicate tailing.

View Article and Find Full Text PDF

Effects of EDTA and Bicarbonate on U(VI) Reduction by Reduced Nontronite.

Environ Sci Technol

December 2024

Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China.

Widespread Fe-bearing clay minerals are potential materials capable of reducing and immobilizing U(VI). However, the kinetics of this process and the impact of environmental factors remain unclear. Herein, we investigated U(VI) reduction by chemically reduced nontronite (rNAu-2) in the presence of EDTA and bicarbonate.

View Article and Find Full Text PDF

Highly enhanced removal of Cr(VI) by nZVI in presence of myo-inositol hexakisphosphate: The depassivation performance and multiple electron transfer mechanisms.

J Environ Sci (China)

April 2025

Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs of the People's Republic of China, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China. Electronic address:

The capability of traditional ligand in countering rapid passivation on nanoscale zero-valent iron (nZVI) surface is inadequate, and the precise electron transfer mechanism remains elusive. In this study, we reported that myo-inositol hexakisphosphate (IHP), a redox-inactive organophosphorus in soil, could highly enhance Cr(VI) reduction and immobilization in comparison with typical ligands (TPP, EDTA, oxalate and phosphate). And the effects of IHP concentration, Cr(VI) concentration and initial pH were systematically investigated.

View Article and Find Full Text PDF

Dramatically enhanced phenol degradation upon FeS oxygenation by low-molecular-weight organic acids.

J Hazard Mater

October 2023

College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China. Electronic address:

Oxidizing potential of FeS for organic contaminants degradation due to hydroxyl radicals (•OH) production has been recently documented, but the oxidizing efficiency was limited. Here, we revealed that low-molecular-weight organic acids (LMWOAs) can immensely enhance phenol degradation during FeS oxygenation due to increased utilization efficiency of FeS electron for •OH production. Upon oxygenation of 0.

View Article and Find Full Text PDF

Influence of organic ligands on the stoichiometry of magnetite nanoparticles.

Nanoscale Adv

August 2023

Univ Rennes, CNRS, Géosciences Rennes - UMR 6118 F-35000 Rennes France

Magnetite, a ubiquitous mineral in natural systems, is of high interest for a variety of applications including environmental remediation, medicine, and catalysis. If the transformation of magnetite to maghemite through the oxidation of Fe has been well documented, mechanisms involving dissolution processes of Fe in aqueous solutions have been overlooked. Here, the effect of dissolved organic ligands (EDTA (ethylenediaminetetraacetic acid), acetic, lactic and citric acids) on Fe solubility and on the stoichiometry (Fe(ii)/Fe(iii)) of magnetite-maghemite nanoparticles (∼10 nm) was investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!