Objective: To study the role of extracellular signal-regulated protein kinase 5 (ERK5) during the biosynthesis of follicle-stimulating hormone (FSH)-mediated progesterone in primary granulosa cells.

Methods: The expressions of phosphorylated and general forms of ERKS in primary granulosa cells after the treatment of FSH were detected by Western blot analysis. The subcellular localization of ERK5 was observed by confocal microscopy. The effect of ERK5 on FSH-mediated progesterone biosynthesis in primary granulosa cells was analyzed using recombinant adenovirus vectors.

Results: ERK5 activation was induced by FSH in a time-dependent manner in primary cultured granulosa cells, although the general ERK5 protein level decreased also in a time-dependent manner. The treatment of FSH showed no remarkable effect on the subcellular distribution of endogenous ERK5, which was mainly in the cytoplasm of granulosa cells. The co-infection of Ad-caMEK5 and Ad-wtERK5 increased the progesterone production and StAR expression in primary cultured granulosa cells, whereas inhibition of ERK5 activation suppressed the FSH-stimulated progesterone production.

Conclusion: ERK5 may stimulate FSH-mediated progesterone production in primary cultured granulosa cells.

Download full-text PDF

Source

Publication Analysis

Top Keywords

granulosa cells
24
primary granulosa
16
fsh-mediated progesterone
12
primary cultured
12
cultured granulosa
12
extracellular signal-regulated
8
signal-regulated protein
8
protein kinase
8
biosynthesis follicle-stimulating
8
progesterone primary
8

Similar Publications

Purpose: To investigate the effects of C-type natriuretic peptide (CNP) on human granulosa cell growth and elucidate its regulatory mechanisms.

Methods: A human non-luteinizing granulosa cell line (HGrC) developed from small antral follicles was used to assess the impact of CNP on cell proliferation and estrogen synthesis. cGMP production via the guanylate cyclase domain of the CNP receptor, natriuretic peptide receptor 2 (NPR2), was confirmed.

View Article and Find Full Text PDF

Polycystic ovary syndrome is one of the most common endocrine disorders in women of reproductive age, characterized by functional and structural alterations of the female reproductive organs. Due to the unknown underlying molecular mechanisms, in vivo murine models and in vitro human cellular models are developed to study the syndrome. These models are used to analyze various aspects of the pathology by replicating the conditions of the syndrome.

View Article and Find Full Text PDF

Luteinizing hormone receptor knockout mouse: What has it taught us?

Andrology

January 2025

Department of Digestion, Metabolism and Reproduction, Institute of Reproductive and Developmental Biology, Hammersmith Campus, Imperial College London, London, UK.

Luteinizing hormone (LH), along with its agonist choriongonadotropin (hCG) in humans, is the key hormone responsible for the tropic regulation of the gonadal function. LH and hCG act through their cognate receptor, the luteinizing hormone/choriongonadotropin receptor (LHCGR; more appropriately LHR in rodents lacking CG), located in the testis in Leydig cells and in the ovary in theca, luteal, and luteinizing granulosa cells. Low levels in LHCGR are also expressed in numerous extragonadal sites.

View Article and Find Full Text PDF

Background: Metabolic Syndrome (MS) is a cluster of conditions that significantly increase the risk of infertility in women. Granulosa cells are crucial for ovarian folliculogenesis and fertility. Understanding molecular alterations in these cells can provide insights into MS-associated infertility.

View Article and Find Full Text PDF

Objective: This study aimed to investigate the possible mechanism through which acupuncture protects ovaries with Poor Ovarian Response (POR) in rats based on microRNA (miRNA).

Methods: Thirty-six SPF SD female non-pregnant rats aged 8 weeks were randomly divided into the blank group, model group, and acupuncture group, with 12 rats in each group. According to the group, the rats were given gavage of Tripterygium wilfordii polyglycosides suspension for 14 days to establish the model of POR, and then the rats were treated with acupuncture for 2 weeks, once a day, for 20 minutes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!