Background: In order to control malaria, it is important to understand the genetic structure of the parasites in each endemic area. Plasmodium vivax is widely distributed in the tropical to temperate regions of Asia and South America, but effective strategies for its elimination have yet to be designed. In South Korea, for example, indigenous vivax malaria was eliminated by the late 1970s, but re-emerged from 1993. We estimated the population structure and temporal dynamics of transmission of P. vivax in South Korea using microsatellite DNA markers.
Methodology/principal Findings: We analyzed 255 South Korean P. vivax isolates collected from 1994 to 2008, based on 10 highly polymorphic microsatellite DNA loci of the P. vivax genome. Allelic data were obtained for the 87 isolates and their microsatellite haplotypes were determined based on a combination of allelic data of the loci. In total, 40 haplotypes were observed. There were two predominant haplotypes: H16 and H25. H16 was observed in 9 isolates (10%) from 1996 to 2005, and H25 in 27 (31%) from 1995 to 2003. These results suggested that the recombination rate of P. vivax in South Korea, a temperate country, was lower than in tropical areas where identical haplotypes were rarely seen in the following year. Next, we estimated the relationships among the 40 haplotypes by eBURST analysis. Two major groups were found: one composed of 36 isolates (41%) including H25; the other of 20 isolates (23%) including H16. Despite the low recombination rate, other new haplotypes that are genetically distinct from the 2 groups have also been observed since 1997 (H27).
Conclusions/significance: These results suggested a continual introduction of P. vivax from other population sources, probably North Korea. Molecular epidemiology using microsatellite DNA of the P. vivax population is effective for assessing the population structure and transmission dynamics of the parasites--information that can assist in the elimination of vivax malaria in endemic areas.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3317904 | PMC |
http://dx.doi.org/10.1371/journal.pntd.0001592 | DOI Listing |
Zhongguo Zhong Yao Za Zhi
December 2024
Experimental Research Center,China Academy of Chinese Medical Sciences Beijing 100700, China.
To promote the conservation and utilization of the germplasm resources and provide a basis for the breeding of new varieties of Murraya paniculata, this study analyzed the genetic diversity of the germplasm resources and developed the molecular identity(ID) card of M. paniculata. Multiple fluorescence PCR-capillary electrophoresis was performed for 65 germplasm accessions of M.
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
December 2024
Experimental Research Center, China Academy of Chinese Medical Sciences Beijing 100700, China.
The chloroplast genome is an important tool for studying plant classification, evolution, and the heterologous production of secondary metabolites and protein drugs. With advancements in sequencing technology and reductions in sequencing costs, chloroplast genome data have rapidly accumulated. However, existing chloroplast genome databases suffer from issues such as incomplete data, inadequate management, and inconsistent, inaccurate information, posing significant challenges for the development and utilization of the chloroplast genome.
View Article and Find Full Text PDFJ Immunother Cancer
January 2025
Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing, China
Background: B-Raf proto-oncogene, serine/threonine kinase (BRAF)-mutant microsatellite stable (MSS) colorectal cancer (CRC) constitutes a distinct CRC subgroup, traditionally perceived as minimally responsive to standard therapies. Recent clinical attempts, such as BRAF inhibitors (BRAFi) monotherapy and combining BRAFi with other inhibitors, have yielded unsatisfactory efficacy. This study aims to identify a novel therapeutic strategy for this challenging subgroup.
View Article and Find Full Text PDFInt J Parasitol
January 2025
Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31 37005 České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic. Electronic address:
The diphyllobothriid tapeworm Dibothriocephalus dendriticus, one of the causative agents of the fish-borne zoonosis dibothriocephalosis, is mainly distributed in the Arctic/subarctic and temperate zones of the Northern Hemisphere (Europe, North America, and Asia), but also in the southern cone region of South America (Patagonia). The genetic structure and gene flow among 589 individuals of D. dendriticus, representing 20 populations, were studied using the mitochondrial cox1 gene as the first choice marker and 10 polymorphic nuclear microsatellite loci as a dominant molecular tool.
View Article and Find Full Text PDFMol Diagn Ther
January 2025
Istituto Europeo di Oncologia, IRCCS, Via Adamello 16, 20139, Milan, Italy.
Background: Predicting response to targeted cancer therapies increasingly relies on both simple and complex genetic biomarkers. Comprehensive genomic profiling using high-throughput assays must be evaluated for reproducibility and accuracy compared with existing methods.
Methods: This study is a multicenter evaluation of the Oncomine™ Comprehensive Assay Plus (OCA Plus) Pan-Cancer Research Panel for comprehensive genomic profiling of solid tumors.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!