Preparation and characterization of the extracellular domain of human Sid-1.

PLoS One

Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, United States of America.

Published: August 2012

In C. elegans, the cell surface protein Sid-1 imports extracellular dsRNA into the cytosol of most non-neuronal cells, enabling systemic spread of RNA interference (RNAi) throughout the worm. Sid-1 homologs are found in many other animals, although for most a function for the protein has not yet been established. Sid-1 proteins are composed of an N-terminal extracellular domain (ECD) followed by 9-12 predicted transmembrane regions. We developed a baculovirus system to express and purify the ECD of the human Sid-1 protein SidT1. Recombinant SidT1 ECD is glycosylated and spontaneously assembles into a stable and discrete tetrameric structure. Electron microscopy (EM) and small angle x-ray scattering (SAXS) studies reveal that the SidT1 ECD tetramer is a compact, puck-shaped globular particle, which we hypothesize may control access of dsRNA to the transmembrane pore. These characterizations provide inroads towards understanding the mechanism of this unique RNA transport system from structural prospective.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3324469PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0033607PLOS

Publication Analysis

Top Keywords

extracellular domain
8
human sid-1
8
sidt1 ecd
8
sid-1
5
preparation characterization
4
characterization extracellular
4
domain human
4
sid-1 elegans
4
elegans cell
4
cell surface
4

Similar Publications

The metabotropic glutamate receptors (mGlus) are class C G protein-coupled receptors (GPCR) that form obligate dimers activated by the major excitatory neurotransmitter L-glutamate. The architecture of mGlu receptor comprises an extracellular Venus-Fly Trap domain (VFT) connected to the transmembrane domain (7TM) through a Cysteine-Rich Domain (CRD). The binding of L-glutamate in the VFTs and subsequent conformational change results in the signal being transmitted to the 7TM inducing G protein binding and activation.

View Article and Find Full Text PDF

The glycoprotein hormones of humans, produced in the pituitary and acting through receptors in the gonads to support reproduction and in the thyroid gland for metabolism, have co-evolved from invertebrate counterparts . These hormones are heterodimeric cystine-knot proteins; and their receptors bind the cognate hormone at an extracellular domain and transmit the signal of this binding through a transmembrane domain that interacts with a heterotrimeric G protein. Structures determined for the human receptors as isolated for cryogenic electron microscopy (cryo-EM) are all monomeric despite compelling evidence for their functioning as dimers .

View Article and Find Full Text PDF

Mechanical properties of the nucleus are remodeled not only by extracellular forces transmitted to the nucleus but also by internal modifications, such as those induced by viral infections. During herpes simplex virus type 1 infection, the viral regulation of essential nuclear functions and growth of the nuclear viral replication compartments are known to reorganize nuclear structures. However, little is known about how this infection-induced nuclear deformation changes nuclear mechanobiology.

View Article and Find Full Text PDF

Schistosomiasis, a neglected tropical disease, is transmitted by freshwater snails. Interruption of transmission will require novel vector-focused interventions. We performed a genome-wide association study of African snails, , exposed to in an endemic area of high transmission in Kenya.

View Article and Find Full Text PDF

Background: The rumen fluke, Calicophoron daubneyi, is the major paramphistome species infecting ruminants within Europe. Adult flukes reside within the rumen where they are in direct contact with a unique collection of microorganisms. Here, we report a 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!