A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Hardness, polymerization depth, and internal adaptation of Class II silorane composite restorations as a function of polymerization protocol. | LitMetric

Objectives: To evaluate the influence of various photoactivation techniques on the internal gap, Knoop-hardness, and polymerization depth of silorane- and methacrylate-based composites in Class II restorations.

Methods: Preparations were made in third molars (n = 10), according to composites (Filtek P60: methacrylate; Filtek P90: silorane) and photoactivation techniques (OC: occlusal photoactivation (control); OBL: occlusal+buccal+lingual photoactivation; and BLO: buccal+lingual+occlusal photoactivation (transdental)). Composites were inserted in two increments, both individually photoactivated for 20s. After 24h, specimens were sectioned and the ratio of internal gaps to interface length (%) recorded. Hardness was tested across the transversal section of restorations (1-4 mm below the surface).

Results: Silorane restorations showed significantly lower gaps compared with methacrylate, regardless of polymerization technique (P<.05). Supplementary energy dose in OBL and BLO protocols caused significant increase in gaps in silorane restorations (P<.05). For methacrylate restorations, OBL activation caused significantly higher gap formation (P<.05). Significantly lower hardness values were seen for silorane than for methacrylate composites (P<.05), regardless of depth and photoactivation. Significantly higher hardness values were seen in BLO activation for methacrylate restorations compared with control (P<.05); for silorane, no differences were observed. Significantly higher hardness values were observed at 1 and 3 mm compared to 2 and 4 mm for both composites.

Conclusions: Internal gaps and hardness are affected by composite type and photoactivation. Despite the reduced values, hardness of silorane is not influenced by photoactivation or by depth. Internal gaps are dependent on the energy dose for both composites, with silorane showing lower internal gaps.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3327500PMC

Publication Analysis

Top Keywords

polymerization depth
8
photoactivation techniques
8
photoactivation
5
hardness polymerization
4
depth internal
4
internal adaptation
4
adaptation class
4
class silorane
4
silorane composite
4
composite restorations
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!