The profile and conformation of proteins that are adsorbed onto a polymeric biomaterial surface have a profound effect on its in vivo performance. Cells and tissue recognize the protein layer rather than directly interact with the surface. The chemistry and morphology of a polymer surface will govern the protein behaviour. So, by controlling the polymer surface, the biocompatibility can be regulated. Nanoscale surface features are known to affect the protein behaviour, and in this overview the nanostructure of self-assembled block copolymers will be harnessed to control protein behaviour. The nanostructure of a block copolymer can be controlled by manipulating the chemistry and arrangement of the blocks. Random, A-B and A-B-A block copolymers composed of methyl methacrylate copolymerized with either acrylic acid or 2-hydroxyethyl methacrylate will be explored. Using atomic force microscopy (AFM), the surface morphology of these block copolymers will be characterized. Further, AFM tips functionalized with proteins will measure the adhesion of that particular protein to polymer surfaces. In this manner, the influence of block copolymer morphology on protein adhesion can be measured. AFM tips functionalized with antibodies to fibronectin will determine how the surfaces will affect the conformation of fibronectin, an important parameter in evaluating surface biocompatibility.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7398454 | PMC |
http://dx.doi.org/10.1098/rsta.2011.0484 | DOI Listing |
Macromol Rapid Commun
January 2025
Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610213, P. R. China.
The self-assembly of macromolecular segments promotes the fabrication of polymer microspheres with multiple morphologies. Inspired by the xanthium shells, A dual-driven self-assembly method have defined that enables the construction of multi-dimensional morphologies on the microsphere surface at emulsion-confined interfaces. The two driving forces are derived from the phase separation caused by the immiscibility of macromolecular segments and the different interactions between chain segments of different hydrophilicity and water molecules.
View Article and Find Full Text PDFNanoscale
January 2025
Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, 118 route de Narbonne, 31062 Toulouse Cedex 9, France.
Hybrid polyionic complexes (HPICs) are colloidal structures with a charged core rich in metal ions and a neutral hydrophilic corona. Their properties, whether as reservoirs or catalysts, depend on the accessibility and environment of the metal ions. This study demonstrates that modifying the coordination sphere of these ions can tune the properties of HPICs by altering the composition of the complexing block or varying formulation conditions.
View Article and Find Full Text PDFBiomacromolecules
January 2025
School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
Polymer-based photosensitizers have found various applications in photodynamic therapy (PDT). However, the absence of targeting ability commonly results in a substantial reduction in photosensitizer accumulation at the tumor site, significantly limiting the therapeutic efficacy of the system. In addition, the development of biodegradable polymeric photosensitizers is of critical importance for biological applications.
View Article and Find Full Text PDFBeilstein J Org Chem
January 2025
Institute of Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
Polysarcosine emerges as a promising alternative to polyethylene glycol (PEG) in biomedical applications, boasting advantages in biocompatibility and degradability. While the self-assembly behavior of block copolymers containing polysarcosine-containing polymers has been reported, their potential for shape transformation remains largely untapped, limiting their versatility across various applications. In this study, we present a comprehensive methodology for synthesizing, self-assembling, and transforming polysarcosine-poly(benzyl glutamate) block copolymers, resulting in the formation of bowl-shaped vesicles, disks, and stomatocytes.
View Article and Find Full Text PDFChemistry
January 2025
Southern University of Science and Technology, Chemistry, 1088 Xueyuan Blvd., Xili, Nanshan District, 518055, Shenzhen, CHINA.
Poly(p-phenylenevinylene) (PPV) is a classic semiconducting π-conjugated polymers with outstanding optical and electronic properties, which shows important applications in the fields of optoelectronic, such as organic light-emitting diodes (OLEDs), organic solar cells (OSCs), and organic field-effect transistors (OFETs). In the working process of the device, the microstate of PPV decides its property. Therefore, it is significant to achieve ordered morphologies based on PPV at micro scale.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!