Stimulation of cells with physiological concentrations of calcium-mobilizing agonists often results in the generation of repetitive cytoplasmic Ca(2+) oscillations. Although oscillations arise from regenerative Ca(2+) release, they are sustained by store-operated Ca(2+) entry through Ca(2+) release-activated Ca(2+) (CRAC) channels. Here, we show that following stimulation of cysteinyl leukotriene type I receptors in rat basophilic leukemia (RBL)-1 cells, large amplitude Ca(2+) oscillations, CRAC channel activity, and downstream Ca(2+)-dependent nuclear factor of activated T cells (NFAT)-driven gene expression are all exclusively maintained by the endoplasmic reticulum Ca(2+) sensor stromal interaction molecule (STIM) 1. However, stimulation of tyrosine kinase-coupled FCεRI receptors evoked Ca(2+) oscillations and NFAT-dependent gene expression through recruitment of both STIM2 and STIM1. We conclude that different agonists activate different STIM proteins to sustain Ca(2+) signals and downstream responses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3344999 | PMC |
http://dx.doi.org/10.1073/pnas.1201204109 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!