Cks1 is an activator of the SCF(Skp2) ubiquitin ligase complex that targets the cell cycle inhibitor p27(Kip1) for degradation. The loss of Cks1 results in p27(Kip1) accumulation and decreased proliferation and inhibits tumorigenesis. We identify here a function of Cks1 in mammalian cell cycle regulation that is independent of p27(Kip1). Specifically, Cks1(-/-); p27(Kip1-/-) mouse embryonic fibroblasts retain defects in the G(1)-S phase transition that are coupled with decreased Cdk2-associated kinase activity and defects in proliferation that are associated with Cks1 loss. Furthermore, concomitant loss of Cks1 does not rescue the tumor suppressor function of p27(Kip1) that is manifest in various organs of p27(Kip1-/-) mice. In contrast, defects in mitotic entry and premature senescence manifest in Cks1(-/-) cells are p27(Kip1) dependent. Collectively, these findings establish p27(Kip1)-independent functions of Cks1 in regulating the G(1)-S transition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3434501PMC
http://dx.doi.org/10.1128/MCB.06771-11DOI Listing

Publication Analysis

Top Keywords

independent p27kip1
8
cell cycle
8
loss cks1
8
cks1
7
p27kip1
6
cks1 promotion
4
promotion phase
4
phase entry
4
entry proliferation
4
proliferation independent
4

Similar Publications

Overcoming Irinotecan Resistance by Targeting Its Downstream Signaling Pathways in Colon Cancer.

Cancers (Basel)

October 2024

Division of Hematology and Oncology, Department of Medicine, UAB Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA.

Among the most popular chemotherapeutic agents, irinotecan, regarded as a prodrug belonging to the camptothecin family that inhibits topoisomerase I, is widely used to treat metastatic colorectal cancer (CRC). Although immunotherapy is promising for several cancer types, only microsatellite-instable (~7%) and not microsatellite-stable CRCs are responsive to it. Therefore, it is important to investigate the mechanism of irinotecan function to identify cellular proteins and/or pathways that could be targeted for combination therapy.

View Article and Find Full Text PDF

Aberrant upregulation of fatty acid synthase (FASN), catalyzing de novo synthesis of fatty acids, occurs in various tumor types, including human hepatocellular carcinoma (HCC). Although FASN oncogenic activity seems to reside in its pro-lipogenic function, cumulating evidence suggests that FASN's tumor-supporting role might also be metabolic-independent. : In the present study, we show that FASN inactivation by specific small interfering RNA (siRNA) promoted the downregulation of the S-phase kinase associated-protein kinase 2 (SKP2) and the consequent induction of p27 in HCC cell lines.

View Article and Find Full Text PDF

Purpose: The biological function of p27 largely depends on its subcellular localization and phosphorylation status. Different subcellular localizations and phosphorylation statuses of p27 may represent distinct clinical values, which are unclear in ovarian cancer. This study aimed to elucidate different subcellular localizations of p27 and pSer10p27 in predicting prognosis and chemotherapy response in ovarian cancer.

View Article and Find Full Text PDF

The anticancer potential and associated mechanisms of flavonoid fisetin are yet to be fully investigated on human head and neck squamous cell carcinoma (HNSCC). In the present study, fisetin (25-75 µM for 24-48 h) dose-dependently inhibited growth and induced death in HNSCC Cal33 and UM-SCC-22B cells, without showing any death in normal cells. Fisetin (25-50 µM) induced G2/M phase arrest via decrease in Cdc25C, CDK1, cyclin B1 expression, and an increase in p53.

View Article and Find Full Text PDF

Selective but not pan-CDK inhibition abrogates 5-FU-driven tissue factor upregulation in colon cancer.

Sci Rep

May 2024

Department of Medicine, Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057, Rostock, Germany.

Thromboembolic events are complications in cancer patients and hypercoagulability has been linked to the tissue factor (TF) pathway, making this an attractive target. Here, we investigated the effects of chemotherapeutics and CDK inhibitors (CDKI) abemaciclib/palbociclib (CDK4/6), THZ-1 (CDK7/12/13), and dinaciclib (CDK1/2/5/9) alone and in combination regimens on TF abundance and coagulation. The human colorectal cancer (CRC) cell line HROC173 was treated with 5-FU or gemcitabine to stimulate TF expression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!