Anti-VEGF/VEGFR therapy for cancer: reassessing the target.

Cancer Res

The Center for Vascular Biology Research, Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA.

Published: April 2012

Judah Folkman recognized that new blood vessel formation is important for tumor growth and proposed antiangiogenesis as a novel approach to cancer therapy. Discovery of vascular permeability factor VEGF-A as the primary tumor angiogenesis factor prompted the development of a number of drugs that targeted it or its receptors. These agents have often been successful in halting tumor angiogenesis and in regressing rapidly growing mouse tumors. However, results in human cancer have been less impressive. A number of reasons have been offered for the lack of greater success, and, here, we call attention to the heterogeneity of the tumor vasculature as an important issue. Human and mouse tumors are supplied by at least 6 well-defined blood vessel types that arise by both angiogenesis and arterio-venogenesis. All 6 types can be generated in mouse tissues by an adenoviral vector expressing VEGF-A(164). Once formed, 4 of the 6 types lose their VEGF-A dependency, and so their responsiveness to anti-VEGF/VEGF receptor therapy. If therapies directed against the vasculature are to have a greater impact on human cancer, targets other than VEGF and its receptors will need to be identified on these resistant tumor vessels.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3335750PMC
http://dx.doi.org/10.1158/0008-5472.CAN-11-3406DOI Listing

Publication Analysis

Top Keywords

blood vessel
8
tumor angiogenesis
8
mouse tumors
8
human cancer
8
tumor
5
anti-vegf/vegfr therapy
4
cancer
4
therapy cancer
4
cancer reassessing
4
reassessing target
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!