Characterizing the presence and sensitivity of the P2X7 receptor in different compartments of the gut.

J Innate Immun

Programa de Imunobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil.

Published: January 2013

Purinergic signaling has been established as an important feature of inflammation and homeostasis. The expression of a number of P2 receptor subtypes in the gut has been reported. In this study, using a well-known permeabilization method that is assessed by flow cytometry, we show that lymphocytes and macrophages from the mesenteric lymph nodes (MLN) and the peritoneal cavity exhibit different sensitivities to extracellular ATP. Compared with the macrophages, the lymphocytes are more sensitive to ATP in the MLN compartment, whereas in the peritoneal cavity the macrophages are more sensitive to ATP than the lymphocytes. In addition, we have shown that the epithelial cells from the small bowel are more resistant to the ATP effects than the cells from the colon. These cells, however, become susceptible after exposure to IFN-γ. Furthermore, by examining parameters such as pH manipulation, the exposure to divalent cations and the P2X7 antagonist Brilliant Blue G, and the use of cells from P2X7(-/-) mice, we have shown that the P2X7 receptors are the ATP-activated receptors responsible for the permeabilization phenomenon. In addition, using Western blot analysis, we have demonstrated the changes in the P2X7 receptor expression in immune cells isolated from different sites in the gut and in the gut-associated lymphoid tissues. Our findings suggest the existence of the site-specific modulation of P2X7 receptors on epithelial and immune cells, and we define purinergic signaling as a new regulatory element in the control of inflammation and cell fate in the gut and in the gut-associated lymphoid tissues.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6741528PMC
http://dx.doi.org/10.1159/000336628DOI Listing

Publication Analysis

Top Keywords

p2x7 receptor
8
purinergic signaling
8
peritoneal cavity
8
sensitive atp
8
p2x7 receptors
8
immune cells
8
gut gut-associated
8
gut-associated lymphoid
8
lymphoid tissues
8
cells
6

Similar Publications

Purinergic signaling plays a major role in aging and neurodegenerative diseases, which are associated with memory decline. Blackcurrant (BC), an anthocyanin-rich berry, is renowned for its antioxidant and neuroprotective activities. However, evidence on the effects of BC on purinergic signaling is lacking.

View Article and Find Full Text PDF

Targeted Cx43 therapeutics reduce NLRP3 inflammasome activation in rat burn injury.

Burns

December 2024

Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11, Mandalay Road, 308232, Singapore; Skin Research Institute Singapore, Level 17, Clinical Sciences Building, 11, Mandalay Road, 308232,  Singapore; National Skin Centre Singapore, 1 Mandalay Rd, 308205, Singapore. Electronic address:

Burns are dynamic injuries characterized by an initial zone of necrosis that progresses to compromise surrounding tissue. Acute inflammation and cell death are two main factors contributing to burn progression. These processes are modulated by Connexin43 (Cx43) hemichannels and gap junctions in burns and chronic wounds.

View Article and Find Full Text PDF

Although low-intensity focused ultrasound (LiFUS) with microbubbles is used to temporally open the blood-brain barrier (BBB), the underlying mechanism is not fully understood. This study aimed to analyze BBB-related alterations in the brain microenvironment after LiFUS, with a focus on the involvement of the purinergic P ×  receptor. Sprague-Dawley rats were sonicated with LiFUS at 0.

View Article and Find Full Text PDF

Cholesterol metabolites modulate ionotropic P2X4 and P2X7 receptor current in microglia cells.

Neuropharmacology

January 2025

Dept. of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy. Electronic address:

The central nervous system is a well-known steroidogenic tissue producing, among others, cholesterol metabolites such as neuroactive steroids, oxysterols and steroid hormones. It is well known that these endogenous molecules affect several receptor classes, including ionotropic GABAergic and NMDA glutamatergic receptors in neurons. It has been shown that also ionotropic purinergic (P2X) receptors are cholesterol metabolites' targets.

View Article and Find Full Text PDF

The purinergic P2X ligand-gated ion channel 7 receptor (P2X7R) plays a critical role in various inflammatory processes and other diseases. Fast determination of compounds P2X7R binding potency and discovery of a promise PET radiotracer for imaging P2X7R require a P2X7R suitable radioligand for radioactive competitive binding assay. Herein, we designed and synthesized thirteen new P2X7R ligands and determined the in vitro binding potency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!