In this paper, a series of Mg-Ti-Pd trilayer films with various thicknesses of the Ti interlayer were prepared by magnetron sputtering. The trilayer films could be reversibly (de)hydrogenated at room temperature. The relationship between structure and properties of Mg-Ti-Pd trilayer films was comprehensively investigated. Our studies showed that the hydrogen storage properties of Mg-Pd films were significantly improved with the addition of a Ti interlayer. The optimal hydrogenation properties were obtained when the Ti interlayer was 1 nm. The superior hydrogenation properties achieved by introduction of the Ti interlayer could be attributed to several aspects: prevention of Mg-Pd alloying; catalytic dissociation of H(2) molecules and provision of heterogeneous nucleation sites. These results were elucidative for the development of high performance intermetallic hydrogen storage materials and thin film based functional devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c2dt30253e | DOI Listing |
J Phys Condens Matter
January 2025
Dep. Fisica, Universidade Federal de Minas Gerais, ICEX, Av. Antonio Carlos 6627, Belo Horizonte, MG, 31270-901, BRAZIL.
Nowadays, experimental research advances in condensed matter physics are deep-rooted in the development and manipulation of nanomaterials, making it essential to explore the fundamental properties of materials that are candidates for nanotechnology. In this work, we study the dependence of the molybdenum disulfide (MoS2) Raman modes on the sample temperature and on the excitation laser power. From the correlation between these two sets of measurements, we determine the planar thermal conductivity of MoSmonolayers, bilayers, trilayers, four layers, seven layers, and eight layers.
View Article and Find Full Text PDFJ Phys Condens Matter
January 2025
Dep. Fisica, Universidade Federal de Minas Gerais, ICEX, Av. Antonio Carlos 6627, Belo Horizonte, MG, 31270-901, BRAZIL.
Nowadays, experimental research advances in condensed matter physics are deep-rooted in the development and manipulation of nanomaterials, making it essential to explore the fundamental properties of materials that are candidates for nanotechnology. In this work, we study the dependence of the molybdenum disulfide (MoS2) Raman modes on the sample temperature and on the excitation laser power. From the correlation between these two sets of measurements, we determine the planar thermal conductivity of MoSmonolayers, bilayers, trilayers, four layers, seven layers, and eight layers.
View Article and Find Full Text PDFACS Omega
December 2024
Institute of Photoelectronic Thin Film Devices and Technology, Nankai University, Tianjin 300350, China.
Silicon heterojunction (SHJ) solar cells, as one of the most promising passivated contact solar cell technologies of the next generation, have the advantages of high conversion efficiency, high open-circuit voltage, low-temperature coefficient, and no potential-induced degradation. For the single-side rear-emitter SHJ solar cells, the n-type carrier selective layer, which serves as the light-incident side, plays a pivotal role in determining the performance of heterojunction devices. Consequently, a superior n-doped layer should exhibit high optical transmittance and minimal optical absorption, along with a substantial effective doping level to guarantee the formation of dark conductivity (σ) and electron-transport capacity.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Section of Condensed Matter Physics, Department of Physics, National and Kapodistrian University of Athens, University Campus, 15784 Athens, Greece.
The rational design of photonic crystal photocatalysts has attracted significant interest in order to improve their light harvesting and photocatalytic performances. In this work, an advanced approach to enhance slow light propagation and visible light photocatalysis is demonstrated for the first time by integrating a planar defect into CoO-TiO inverse opals. Trilayer photonic crystal films were fabricated through the successive deposition of an inverse opal TiO underlayer, a thin titania interlayer, and a photonic top layer, whose visible light activation was implemented through surface modification with CoO nanoscale complexes.
View Article and Find Full Text PDFNanomaterials (Basel)
November 2024
Department of Chemistry, College of Natural Sciences, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea.
Fabricating photoanodes with a strong light-scattering effect can improve the photoconversion efficiency of dye-sensitized solar cells (DSSCs). In this work, a facile microwave hydrothermal process was developed to prepare Au@TiO core-shell nanostructures, and then the Au core was removed by etching, resulting in hollow TiO. Morphological characterizations such as field emission scanning and transmission electron microscopy measurements have been used for the successful formation of core-shell and hollow TiO nanostructures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!