This work aims to compare the operation costs (energy, reagents, waste management) for the three layouts usually used in wastewater treatment plants incorporating biofilters, using technical and economical data acquired during 10 years of operation of a Parisian plant (Seine Centre, 240,000 m(3) d(-1) -800,000 equivalent inhabitants). The final objective is to establish general economical data and tendencies that can be translated from our study to any biofiltration plant. Our results evidenced the savings achieved through the treatment process combining upstream and downstream denitrification. To use this layout reduced the operating costs by some 10% as compared with conventional processing only comprising downstream denitrification. Operating costs were respectively estimated at 37 and 34 €/1,000 m(3) for downstream denitrification and combining upstream and downstream denitrification layouts.

Download full-text PDF

Source
http://dx.doi.org/10.2166/wst.2012.929DOI Listing

Publication Analysis

Top Keywords

downstream denitrification
16
operating costs
12
wastewater treatment
8
economical data
8
combining upstream
8
upstream downstream
8
municipal wastewater
4
treatment
4
treatment biofiltration
4
biofiltration comparisons
4

Similar Publications

Coupling of iron-carbon can form a mixotrophic denitrification and is regarded as a promising solution for purifying nitrate-rich agricultural runoff. However, its prevalence and efficacy of the synergistic augmentation of nitrogen elimination and net NO sinks remain crucial knowledge gaps in ecological ditches (eco-ditches). Here, we investigated the underlying variability mechanisms by implementing sponge iron (sFe)-coupled Iris hexagonus (IH)- or Myriophyllum aquaticum (MA)-derived biochar produced via microwave-assisted (MW) pyrolysis and conventional pyrolysis.

View Article and Find Full Text PDF

Sixty percent of discrete surface water bodies in Europe do not meet the requirements for good ecological and chemical status and in Germany, the situation is even worse with over 90% of surface water bodies failing to meet the threshold. In addition to hydromorphological degradation, intensive land use and invasive species, chemical pollution is primarily considered to be responsible for the inadequate ecological status of the water bodies. As a quantitatively important source of micropollutants, wastewater treatment plants (WWTPs) represent an important entry path for chemical stressors.

View Article and Find Full Text PDF

Microbial community and functional shifts across agricultural and urban landscapes within a Lake Erie watershed.

J Environ Manage

December 2024

Great Lakes Institute of Environmental Research, University of Windsor, Windsor, Ontario, N9B 3P4, Canada. Electronic address:

The role of sediment microbial communities in regulating the loss and retention of nutrients in aquatic ecosystems has been increasingly recognised. However, in the Great Lakes, where nutrient mitigation focuses on harmful algal blooms, there are limited studies examining the fundamental role of water/sediment microbes in nutrient biogeochemical cycling. Little is understood in this regard considering the increase in anthropogenic pressure on in-stream biological processes impacting nutrient flux to lakes.

View Article and Find Full Text PDF

Dianbu River, flowing into the western part of Chaohu Lake, has been heavily polluted, and nitrogen is one of the key factors. During three periods (wet, normal, and dry), 30 surface water samples were collected from the Dianbu River Basin as the research objects. The water chemistry, multiple stable isotopes (N-NO, O-NO, and N-NH), and a SIAR mixing model were analyzed not only to understand the spatio-temporal distribution characteristics of nitrogen and its influencing factors but also the sources of nitrogen.

View Article and Find Full Text PDF

Phosphorus removal from irrigation return flow using an iron oxide filter and denitrifying pine bark bioreactor treatment train.

Environ Sci Pollut Res Int

December 2024

Department of Plant and Environmental Sciences, E-143 Poole Agricultural Center, Clemson University, Clemson, SC, 29634, USA.

Development of low-cost aqueous P removal methods is imperative for water resource protection. This study assessed the contribution of an iron oxide (FeOx) filter for P sorption paired with a denitrifying pine bark bioreactor, quantifying the effect of treatment order on P removal. FeOx filters were placed upstream (order 1) or downstream (order 2) of pine bark bioreactors receiving a continuous flow of simulated irrigation return flow after constructed floating wetland treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!