Induced pluripotent stem (iPS) cells have potential for multilineage differentiation and provide a resource for stem cell-based treatment. However, the therapeutic effect of iPS cells on acute kidney injury (AKI) remains uncertain. Given that the oncogene c-Myc may contribute to tumorigenesis by causing genomic instability, herein we evaluated the therapeutic effect of iPS cells without exogenously introduced c-Myc on ischemia-reperfusion (I/R)-induced AKI. As compared with phosphate-buffered saline (PBS)-treated group, administration of iPS cells via intrarenal arterial route into kidneys improved the renal function and attenuated tubular injury score at 48 h after ischemia particularly at the dose of 5 × 10(5) iPS cells. However, a larger number of iPS cells (5 × 10(7) per rat) diminished the therapeutic effects for AKI and profoundly reduced renal perfusion detected by laser Doppler imaging in the reperfusion phase. In addition, the green fluorescence protein-positive iPS cells mobilized to the peritubular area at 48 h following ischemia, accompanied by a significant reduction in infiltration of macrophages and apoptosis of tubular cells, and a remarkable enhancement in endogenous tubular cell proliferation. Importantly, transplantation of iPS cells reduced the expression of oxidative substances, proinflammatory cytokines, and apoptotic factors in I/R kidney tissues and eventually improved survival in rats of ischemic AKI. Six months after transplantation in I/R rats, engrafted iPS cells did not result in tumor formation in kidney and other organs. In summary, considering the antioxidant, anti-inflammatory, and antiapoptotic properties of iPS cells without c-Myc, transplantation of such cells may be a treatment option for ischemic AKI.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3727/096368912X636902 | DOI Listing |
BMC Med Genomics
January 2025
Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK.
Amyotrophic lateral sclerosis (ALS) lacks a specific biomarker, but is defined by relatively selective toxicity to motor neurons (MN). As others have highlighted, this offers an opportunity to develop a sensitive and specific biomarker based on detection of DNA released from dying MN within accessible biofluids. Here we have performed whole genome bisulfite sequencing (WGBS) of iPSC-derived MN from neurologically normal individuals.
View Article and Find Full Text PDFNPJ Regen Med
January 2025
Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan.
Gut microbiota affect transplantation outcomes; however, the influence of immunosuppression and cell therapy on the gut microbiota in cardiovascular care remains unexplored. We investigated gut microbiota dynamics in a nonhuman primate (NHP) cardiac ischemia/reperfusion model while under immunosuppression and receiving cell therapy with human induced pluripotent stem cell (hiPSC)-derived endothelial cells (EC) and cardiomyocytes (CM). Both immunosuppression and EC/CM co-treatment increased gut microbiota alpha diversity.
View Article and Find Full Text PDFCell Rep Med
December 2024
Department of Ophthalmology, Keio University School of Medicine, Shinjuku-ku 160-8582, Tokyo, Japan; Department of Clinical Regenerative Medicine, Fujita Medical Innovation Center, Fujita Health University, Ota-ku, Tokyo 144-0041, Japan. Electronic address:
A first-in-human investigator-initiated clinical study of a corneal endothelial cell substitute (CLS001) derived from a clinical-grade induced pluripotent stem cell (iPSC) line shows improvement of visual acuity and corneal stromal edema, with no adverse events for up to 1 year after surgery for the treatment of bullous keratopathy. While preclinical tests, including multiple whole-genome analysis and tumorigenicity tests adhering to the Food and Drug Administration (FDA) draft guidelines, are negative, an additional whole-genome analysis conducted on transplanted CLS001 cells reveals a de novo in-frame deletion of exon22 in the EP300 gene. No adverse events related to the mutation are observed.
View Article and Find Full Text PDFBiomaterials
January 2025
Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA. Electronic address:
Cardiomyocytes derived from human induced pluripotent stem cells (hiPSC-CMs) possess tremendous advantage for cardiac regeneration. However, cell survival is challenging upon cell transplantation. Since microgravity can profoundly affect cellular properties, we investigated the effect of spaceflight on hiPSC-CMs.
View Article and Find Full Text PDFJ Cell Physiol
January 2025
Department of Pharmaceutical Sciences and Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, USA.
Glucose is a major source of energy for the brain. At the blood-brain barrier (BBB), glucose uptake is facilitated by glucose transporter 1 (GLUT1). GLUT1 Deficiency Syndrome (GLUT1DS), a haploinsufficiency affecting SLC2A1, reduces glucose brain uptake.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!