Two-layer synchronized ternary quantum-dot cellular automata wire crossings.

Nanoscale Res Lett

Faculty of Computer and Information Science, University of Ljubljana, TrŽaška cesta, Slovenia.

Published: April 2012

: Quantum-dot cellular automata are an interesting nanoscale computing paradigm. The introduction of the ternary quantum-dot cell enabled ternary computing, and with the recent development of a ternary functionally complete set of elementary logic primitives and the ternary memorizing cell design of complex processing structures is becoming feasible. The specific nature of the ternary quantum-dot cell makes wire crossings one of the most problematic areas of ternary quantum-dot cellular automata circuit design. We hereby present a two-layer wire crossing that uses a specific clocking scheme, which ensures the crossed wires have the same effective delay.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3464870PMC
http://dx.doi.org/10.1186/1556-276X-7-221DOI Listing

Publication Analysis

Top Keywords

ternary quantum-dot
16
quantum-dot cellular
12
cellular automata
12
wire crossings
8
quantum-dot cell
8
ternary
7
quantum-dot
5
two-layer synchronized
4
synchronized ternary
4
automata wire
4

Similar Publications

We propose a temperature-dependent optimization procedure for the second-nearest neighbor (2NN) * tight-binding (TB) theory parameters to calculate the effects of strain, structure dimensions, and alloy composition on the band structure of heterostructure spherical core/shell quantum dots (QDs). We integrate the thermoelastic theory of solids with the 2NN * TB theory to calculate the strain, core and shell dimensions, and composition effects on the band structure of binary/ternary CdSe/Cd(Zn)S and ZnSe/Zn(Cd)S QDs at any temperature. We show that the 2NN * TB theory with optimized parameters greatly improves the prediction of the energy dispersion curve at and in the vicinity of L and X symmetry points.

View Article and Find Full Text PDF

Currently, CsPbI quantum dots (QDs) based light-emitting diodes (LEDs) are not well suited for achieving high efficiency and operational stability due to the binary-precursor method and purification process, which often results in the nonstoichiometric ratio of Cs/Pb/I. This imbalance leads to amounts of iodine vacancies, inducing severe non-radiative recombination processes and phase transitions of QDs. Herein, red-emitting CsPbI QDs are reported with excellent optoelectronic properties and stability based on the synergistic effects of halide-rich modulation passivation and lattice repair.

View Article and Find Full Text PDF

Ternary InGaP quantum dots (QDs) have emerged as promising materials for efficient blue emission, owing to their tunable bandgap, high stability, and superior optoelectronic properties. However, most reported methods for Ga incorporation into the InP structure have predominantly relied on cation exchange in pre-grown InP QDs at elevated temperatures above 280 °C. This is largely due to the fact that, when heating In and P precursors in the presence of Ga, an InP/GaP core-shell structure readily forms.

View Article and Find Full Text PDF

Pirquitasite AgZnSnS (AZTS) nanocrystals (NCs) are emergent, lead-free emissive materials in the coinage chalcogenide family with applications in optoelectronic technologies. Like many multinary nanomaterials, their phase-pure synthesis is complicated by the generation of impurities, e.g.

View Article and Find Full Text PDF

Colloidal quantum dots (QDs) are attractive gain materials owing to the wide range of accessible colors. However, the existing QD lasers struggle to combine technologically relevant metrics of low threshold and long operating duration with considerable output powers. Here a new class of full-color QD lasers are reported, featuring low threshold, uninterrupted operation for dozens of hours, and multimilliwatt output under quasi-steady-state pumping, by coupling the high-gain QDs with a double-clad pumping scheme.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!