Nitrate and halide ions coexist in a number of environmental systems, including sea salt particles, the Arctic snowpack, and alkaline dry lakes. However, little is known about potential synergisms between halide and nitrate ions. The effect of sea salt on NO(3)(-) photochemistry at 311 nm was investigated at 298 K using thin films of deliquesced NaNO(3)-synthetic sea salt mixtures. Gas phase NO(2), NO, and halogen products were measured as a function of photolysis time using NO(y) chemiluminescence and atmospheric pressure ionization mass spectrometry (API-MS). The production of NO(2) increases with the halide-to-nitrate ratio, and is similar to that for mixtures of NaCl with NaNO(3). Gas phase halogen production also increased with the halide-to-nitrate ratio, consistent with NO(3)(-) photolysis yielding OH which oxidizes halide ions in the film. Yields of gas phase halogens and NO were strongly dependent on the acidity of the solution, while that of NO(2) was not. An additional halogen formation mechanism in the dark involving molecular HNO(3) is proposed that may be important in other systems such as reactions on surfaces. These studies show that the yield of Br(2) relative to NO(2) during photolysis of halide-nitrate mixtures could be as high as 35% under some atmospheric conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/es300607cDOI Listing

Publication Analysis

Top Keywords

gas phase
16
sea salt
16
nitrate ions
8
halide ions
8
halide-to-nitrate ratio
8
production gas
4
phase
4
phase no₂
4
no₂ halogens
4
halogens photochemical
4

Similar Publications

Objective: Laparoscopic cholecystectomy is a common procedure for gallbladder diseases, but many patients experience shoulder pain due to pneumoperitoneum. This study investigates the comparative effectiveness of warm carbon dioxide gas insufflation versus local heat application in reducing shoulder pain after laparoscopic cholecystectomy. We also examined changes in body temperature during surgery and postoperative shivering in the intervention and control groups.

View Article and Find Full Text PDF

Direct Methane to Methanol Conversion: An Overview of Non-Syn Gas Catalytic Strategies.

Chem Rec

January 2025

Bioinspired & Biomimetic Inorganic Chemistry Laboratory, Department of Chemistry, National Institute of Technology Calicut, Kozhikode, Kerala, 673601, India.

Direct methane to methanol conversion is a dream reaction in industrial chemistry, which takes inspiration from the biological methanol production catalysed by methane monooxygenase enzymes (MMOs). Over the years, extensive studies have been conducted on this topic by bioengineering the MMOs, and tailoring methods to isolate the MMOs in the active form. Similarly, remarkable achievements have been noted in other methane activation strategies such as the use of heterogeneous catalysts or molecular catalysts.

View Article and Find Full Text PDF

Solvent Mediated Interfacial Microenvironment Design for High-Performance Electrochemical CO Reduction to C Products.

Small

January 2025

National Energy Metal Resources and New Materials Key Laboratory, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Hunan Provincial Key Laboratory of Nonferrous Value-Added Metallurgy, School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China.

Electrochemical CO reduction (CORR) in membrane electrode assembly (MEA) represents a viable strategy for converting CO into value-added multi-carbon (C) compounds. Therefore, the microstructure of the catalyst layer (CL) affects local gas transport, charge conduction, and proton supply at three-phase interfaces, which is significantly determined by the solvent environment. However, the microenvironment of the CLs and the mechanism of the solvent effect on C selectivity remains elusive.

View Article and Find Full Text PDF

While biomass burning (BB) is the largest source of fine particles in the atmosphere, the influence of relative humidity (RH) and photochemistry on BB secondary organic aerosol (BB-SOA) formation and aging remains poorly constrained. These effects need to be addressed to better capture and comprehend the evolution of BB-SOA in the atmosphere. Cresol (CHO) is used as a BB proxy to investigate these effects.

View Article and Find Full Text PDF

Ab initio study on the dynamics and spectroscopy of collective rovibrational polaritons.

J Chem Phys

January 2025

Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary.

Accurate rovibrational molecular models are employed to gain insight in high-resolution into the collective effects and intermolecular processes arising when molecules in the gas phase interact with a resonant infrared (IR) radiation mode. An efficient theoretical approach is detailed, and numerical results are presented for the HCl, H2O, and CH4 molecules confined in an IR cavity. It is shown that by employing a rotationally resolved model for the molecules, revealing the various cavity-mediated interactions between the field-free molecular eigenstates, it is possible to obtain a detailed understanding of the physical processes governing the energy level structure, absorption spectra, and dynamic behavior of the confined systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!