Microtubular stability affects pVHL-mediated regulation of HIF-1alpha via the p38/MAPK pathway in hypoxic cardiomyocytes.

PLoS One

Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University, Chongqing, China.

Published: October 2012

Background: Our previous research found that structural changes of the microtubule network influence glycolysis in cardiomyocytes by regulating the hypoxia-inducible factor (HIF)-1α during the early stages of hypoxia. However, little is known about the underlying regulatory mechanism of the changes of HIF-1α caused by microtubule network alternation. The von Hippel-Lindau tumor suppressor protein (pVHL), as a ubiquitin ligase, is best understood as a negative regulator of HIF-1α.

Methodology/principal Findings: In primary rat cardiomyocytes and H9c2 cardiac cells, microtubule-stabilization was achieved by pretreating with paclitaxel or transfection of microtubule-associated protein 4 (MAP4) overexpression plasmids and microtubule-depolymerization was achieved by pretreating with colchicine or transfection of MAP4 siRNA before hypoxia treatment. Recombinant adenovirus vectors for overexpressing pVHL or silencing of pVHL expression were constructed and transfected in primary rat cardiomyocytes and H9c2 cells. With different microtubule-stabilizing and -depolymerizing treaments, we demonstrated that the protein levels of HIF-1α were down-regulated through overexpression of pVHL and were up-regulated through knockdown of pVHL in hypoxic cardiomyocytes. Importantly, microtubular structure breakdown activated p38/MAPK pathway, accompanied with the upregulation of pVHL. In coincidence, we found that SB203580, a p38/MAPK inhibitor decreased pVHL while MKK6 (Glu) overexpression increased pVHL in the microtubule network altered-hypoxic cardiomyocytes and H9c2 cells.

Conclusions/significance: This study suggests that pVHL plays an important role in the regulation of HIF-1α caused by the changes of microtubular structure and the p38/MAPK pathway participates in the process of pVHL change following microtubule network alteration in hypoxic cardiomyocytes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3323643PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0035017PLOS

Publication Analysis

Top Keywords

microtubule network
16
p38/mapk pathway
12
hypoxic cardiomyocytes
12
cardiomyocytes h9c2
12
pvhl
10
hif-1α caused
8
primary rat
8
rat cardiomyocytes
8
achieved pretreating
8
microtubular structure
8

Similar Publications

An intracellular protozoan, the Apicomplexan parasite () infects nucleated cells, in which it triggers the formation of a specialized membrane-confined cytoplasmic vacuole, named the parasitophorous vacuole (PV). One of the most prominent events in the parasite's intracellular life is the congregation of the host cell mitochondria around the PV. However, the significance of this event has remained largely unsolved since the parasite itself possesses a functional mitochondrion, which is essential for its replication.

View Article and Find Full Text PDF

Small GTPase ARL4C Associated with Various Cancers Affects Microtubule Nucleation.

Biomedicines

December 2024

A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia.

The changes in the level of small GTPase ARL4C are associated with the initiation and progression of many different cancers. The content of ARL4C varies greatly between different tissues, and the induction of ARL4C expression leads to changes in cell morphology and proliferation. Although ARL4C can bind alpha-tubulin and affect intracellular transport, the role of ARL4C in the functioning of the tubulin cytoskeleton remained unclear.

View Article and Find Full Text PDF

The chromatin of the centromere provides the assembly site for the mitotic kinetochore that couples microtubule attachment and force production to chromosome movement in mitosis. The chromatin of the centromere is specified by nucleosomes containing the histone H3 variant CENP-A. The constitutive centromeric-associated network (CCAN) and kinetochore are assembled on CENP-A chromatin to enable chromosome separation.

View Article and Find Full Text PDF

CENPE is a diagnostic and prognostic biomarker for cervical cancer.

Heliyon

December 2024

Department of Medical Rehabilitation, School of Nursing, Jilin University, 965 Xinjiang Street, Chaoyang District, Changchun, 130021, China.

Cervical squamous cell carcinoma (CESC) is a common cancer in women. Despite advancements in early diagnosis through high-risk human papillomavirus (HPV) screening, challenges remain in predicting and treating the disease. Hence, the identification of novel biomarkers for prognosis and therapeutic targets is crucial.

View Article and Find Full Text PDF

Palmitoylation-mediated NLRP3 inflammasome activation in teleosts highlights evolutionary divergence in immune regulation.

Zool Res

January 2025

State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China.

NLRP3 inflammasome activation is pivotal for cytokine secretion and pyroptosis in response to diverse stimuli, playing a crucial role in innate immunity. While extensively studied in mammals, the regulatory mechanisms governing NLRP3 activation in non-mammalian vertebrates remain largely unexplored. Teleosts, as basal vertebrates, represent an ideal model for exploring the evolutionary trajectory of inflammasome regulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!