Background: Psychosis has various causes, including mania and schizophrenia. Since the differential diagnosis of psychosis is exclusively based on subjective assessments of oral interviews with patients, an objective quantification of the speech disturbances that characterize mania and schizophrenia is in order. In principle, such quantification could be achieved by the analysis of speech graphs. A graph represents a network with nodes connected by edges; in speech graphs, nodes correspond to words and edges correspond to semantic and grammatical relationships.

Methodology/principal Findings: To quantify speech differences related to psychosis, interviews with schizophrenics, manics and normal subjects were recorded and represented as graphs. Manics scored significantly higher than schizophrenics in ten graph measures. Psychopathological symptoms such as logorrhea, poor speech, and flight of thoughts were grasped by the analysis even when verbosity differences were discounted. Binary classifiers based on speech graph measures sorted schizophrenics from manics with up to 93.8% of sensitivity and 93.7% of specificity. In contrast, sorting based on the scores of two standard psychiatric scales (BPRS and PANSS) reached only 62.5% of sensitivity and specificity.

Conclusions/significance: The results demonstrate that alterations of the thought process manifested in the speech of psychotic patients can be objectively measured using graph-theoretical tools, developed to capture specific features of the normal and dysfunctional flow of thought, such as divergence and recurrence. The quantitative analysis of speech graphs is not redundant with standard psychometric scales but rather complementary, as it yields a very accurate sorting of schizophrenics and manics. Overall, the results point to automated psychiatric diagnosis based not on what is said, but on how it is said.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3322168PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0034928PLOS

Publication Analysis

Top Keywords

speech graphs
16
schizophrenics manics
12
speech
9
mania schizophrenia
8
analysis speech
8
graph measures
8
graphs provide
4
provide quantitative
4
quantitative measure
4
measure thought
4

Similar Publications

Networks in the parietal and premotor cortices enable essential human abilities regarding motor processing, including attention and tool use. Even though our knowledge on its topography has steadily increased, a detailed picture of hemisphere-specific integrating pathways is still lacking. With the help of multishell diffusion magnetic resonance imaging, probabilistic tractography, and the Graph Theory Analysis, we investigated connectivity patterns between frontal premotor and posterior parietal brain areas in healthy individuals.

View Article and Find Full Text PDF

Parkinson's Disease (PD) is the second-most common neurodegenerative disorder. There is a certain pathological connection between PD and dysphonia. Speech signals have been successfully used to identify PD and predict its severity.

View Article and Find Full Text PDF

This study presents an innovative approach to cuffless blood pressure prediction by integrating speech and demographic features. With a focus on non-invasive monitoring, especially in remote regions, our model harnesses speech signals and demographic data to accurately estimate blood pressure. We found a strong correlation between our predictive model and early-stage high blood pressure, highlighting its potential for early detection.

View Article and Find Full Text PDF

Background:  Music-induced hearing loss (MIHL) is a critical public health issue. During music instruction, students and teachers are at risk of developing hearing loss due to exposure to loud and unsafe sound levels that can exceed 100 dBA. Prevention of MIHL in music students must be a desired action of all music educators.

View Article and Find Full Text PDF

Pre-trained chemical language models (CLMs) have attracted increasing attention within the domains of cheminformatics and bioinformatics, inspired by their remarkable success in the natural language processing (NLP) domain such as speech recognition, text analysis, translation, and other objectives associated with language. Furthermore, the vast amount of unlabeled data associated with chemical compounds or molecules has emerged as a crucial research focus, prompting the need for CLMs with reasoning capabilities over such data. Molecular graphs and molecular descriptors are the predominant approaches to representing molecules for property prediction in machine learning (ML).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!