Cardiomyocytes from failing hearts exhibit reduced levels of the sarcoplasmic reticulum (SR) Ca(2+)-ATPase (SERCA) and/or increased activity of the endogenous SERCA inhibitor phospholamban. The resulting reduction in the Ca(2+) affinity of SERCA impairs SR Ca(2+) cycling in this condition. We have previously investigated the physiological impact of increasing the Ca(2+) affinity of SERCA by substituting SERCA2a with the higher affinity SERCA2b pump. When phospholamban was also ablated, these double knockouts (DKO) exhibited a dramatic reduction in total SERCA levels, severe hypertrophy, and diastolic dysfunction. We presently examined the role of cardiomyocyte Ca(2+) homeostasis in both functional and structural remodeling in these hearts. Despite the low SERCA levels in DKO, we observed near-normal Ca(2+) homeostasis with rapid Ca(2+) reuptake even at high Ca(2+) loads and stimulation frequencies. Well-preserved global Ca(2+) homeostasis in DKO was paradoxically associated with marked activation of the Ca(2+)-dependent nuclear factor of activated T-cell-calcineurin pathway known to trigger hypertrophy. No activation of the MAP kinase signaling pathway was detected. These findings suggest that local changes in Ca(2+) homeostasis may play an important signaling role in DKO, perhaps due to reduced microdomain Ca(2+) buffering by SERCA2b. Furthermore, alterations in global Ca(2+) homeostasis can also not explain impaired in vivo diastolic function in DKO. Taken together, our results suggest that normalizing global cardiomyocyte Ca(2+) homeostasis does not necessarily protect against hypertrophy and heart failure development and that excessively increasing SERCA Ca(2+) affinity may be detrimental.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpheart.01166.2011 | DOI Listing |
ACS Pharmacol Transl Sci
January 2025
Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, Kamrup, Assam 781101, India.
Epilepsy is one of the most common neurological disorders. Calcium dysregulation and neuroinflammation are essential and common mechanisms in epileptogenesis. Sarco/endoplasmic reticulum (ER) Ca-ATPase 2b (SERCA2b), a crucial calcium regulatory pump, plays pathological roles in various calcium dysregulation-related diseases.
View Article and Find Full Text PDFPhysiol Rev
January 2025
Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15261.
The redox signaling network in mammals has garnered enormous interest and taken on major biological significance in recent years as the scope of NADPH oxidases (NOXs) as regulators of physiological signaling and cellular degeneration has grown exponentially. All NOX subtypes have in common the capacity to generate reactive oxygen species (ROS) superoxide anion (O) and/or hydrogen peroxide (HO). A baseline, normal level of ROS formation supports a wide range of processes under physiological conditions.
View Article and Find Full Text PDFPLoS Pathog
January 2025
LPHI, UMR 5294 CNRS/UM-UA15 Inserm, Université de Montpellier, Montpellier, France.
A sustained blood-stage infection of the human malaria parasite P. falciparum relies on the active exit of merozoites from their host erythrocytes. During this process, named egress, the infected red blood cell undergoes sequential morphological events: the rounding-up of the surrounding parasitophorous vacuole, the disruption of the vacuole membrane and finally the rupture of the red blood cell membrane.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya, 266003/572024, China.
The scarcity of effective neuroprotective agents and the presence of blood-brain barrier (BBB)-mediated extremely inefficient intracerebral drug delivery are predominant obstacles to the treatment of cerebral ischemic stroke (CIS). Herein, ROS-responsive borneol-based amphiphilic polymeric NPs are constructed by using traditional Chinese medicine borneol as functional blocks that served as surface brain-targeting ligand, inner hydrophobic core for efficient drug loading of membrane-permeable calcium chelator BAPTA-AM, and neuroprotective structural component. In MCAO mice, the nanoformulation (polymer: 3.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
The Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, 401147, P. R. China.
Senescent bone tissue displays a pathological imbalance characterized by decreased angiogenesis, disrupted bioelectric signaling, ion dysregulation, and reduced stem cell differentiation. Once bone defects occur, this pathological imbalance makes them difficult to repair. An innovative synergistic therapeutic strategy is utilized to reverse these pathological imbalances via a conductive hydrogel doped with magnesium ion (Mg)-modified black phosphorus (BP).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!