One of the major limitations to the use of infrared focal plane arrays (IRFPAs) in stationary Fourier transform spectrometers (FTSs) comes from the spatial inhomogeneities of the pixel responses, where the inhomogeneities of the cut-off wavenumbers of the pixels can prevail. The hypothesis commonly assumed for FTSs that all the pixels are equivalent is thus inaccurate and results in a degradation of the estimated spectrum, even far from the cut-off wavenumbers. However, if the individual spectral responses of the pixels are measured beforehand, this a priori information can be used in the inversion process to produce reliable spectra. Thus, spatial inhomogeneities are not an obstacle for the use of infrared stationary FTS. This result is illustrated in this paper by numerical simulations, based on a realistic description of an IRFPA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.51.001660 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!