We have studied the tunneling of a circularly polarized optical vortex (OV) in parallel strongly spun elliptical fibers. In this case it is possible to route the OV in a pure state from one of the fibers to another. We have determined the power efficiency of this process and have shown that such a directional coupler can serve for inversion of the topological charge of the incoming vortex.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.51.000C17DOI Listing

Publication Analysis

Top Keywords

optical vortices
4
vortices routing
4
routing coupled
4
coupled elliptical
4
elliptical spun
4
spun fibers
4
fibers studied
4
studied tunneling
4
tunneling circularly
4
circularly polarized
4

Similar Publications

Engineering Polar Vortices via Strain Soliton Interactions in Marginally Twisted Multilayer Graphene.

Nano Lett

January 2025

National Laboratory of Solid-State Microstructures, School of Electronic Science and Engineering and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, Jiangsu, China.

Strain solitons have been widely observed in van der Waals materials and their heterostructures. They can manifest as one-dimensional (1D) wires and quasi-two-dimensional (2D) networks. However, their coexistence within the same region has rarely been observed, and their interplay remains unexplored.

View Article and Find Full Text PDF

Vortex beams are currently drawing a great deal of interest, from fundamental research to several promising applications. While their generation in bulky optical devices limits their use in integrated complex systems, metasurfaces have recently proven successful in creating optical vortices, especially in the linear regime. In the nonlinear domain, of strategic importance for the future of classical and quantum information, to date orbital angular momentum has only been created in qualitative ways, without discussing discrepancies between design and experimental results.

View Article and Find Full Text PDF

Recently, vortex beams have been widely studied and applied because they carry orbital angular momentum (OAM). It is widely acknowledged in the scientific community that fractional OAM does not typically exhibit stable propagation; notably, the notion of achieving stable propagation with dual-fractional OAM within a single optical vortex has been deemed impracticable. Here, we address the scientific problem through the combined modulation of phase and polarization, resulting in the generation of a dual-fractional OAM vector vortex beam that can stably exist in free space.

View Article and Find Full Text PDF

Helical Surface Relief Formation by Two-Photon Polymerization Reaction Using a Femtosecond Optical Vortex Beam.

J Phys Chem Lett

January 2025

Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan.

Optical vortices possess a helical phase wavefront with central phase dislocation and orbital angular momentum. We demonstrated three-dimensional microstructure formation using a femtosecond optical vortex beam. Two-photon polymerization of photocurable resin was induced by long-term exposure, resulting in the fabrication of cylindrical structures.

View Article and Find Full Text PDF

The fly ash generated by coal combustion is one of the main sources of PM2.5, so the particulate matter removal technology of coal-fired boilers is receiving increasing attention. Turbulent agglomeration has emerged as a powerful tool for improving the efficiency of removing fine particulates from environments, sparking interest in its study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!