Caveolae are specialized domains present in the plasma membrane (PM) of most mammalian cell types. They function in signalling, membrane regulation, and endocytosis. We found that the Eps-15 homology domain-containing protein 2 (EHD2, an ATPase) associated with the static population of PM caveolae. Recruitment to the PM involved ATP binding, interaction with anionic lipids, and oligomerization into large complexes (60-75S) via interaction of the EH domains with intrinsic NPF/KPF motifs. Hydrolysis of ATP was essential for binding of EHD2 complexes to caveolae. EHD2 was found to undergo dynamic exchange at caveolae, a process that depended on a functional ATPase cycle. Depletion of EHD2 by siRNA or expression of a dominant-negative mutant dramatically increased the fraction of mobile caveolar vesicles coming from the PM. Overexpression of EHD2, in turn, caused confinement of cholera toxin B in caveolae. The confining role of EHD2 relied on its capacity to link caveolae to actin filaments. Thus, EHD2 likely plays a key role in adjusting the balance between PM functions of stationary caveolae and the role of caveolae as vesicular carriers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3364743PMC
http://dx.doi.org/10.1038/emboj.2012.98DOI Listing

Publication Analysis

Top Keywords

caveolae
9
ehd2
8
plasma membrane
8
oligomers atpase
4
atpase ehd2
4
ehd2 confine
4
confine caveolae
4
caveolae plasma
4
membrane association
4
association actin
4

Similar Publications

Background: In normal prostate cells, receptors for oxytocin (OT), a peptide involved in regulating prostate growth are sequestered within membrane microdomains called caveolae. During cancer progression, polymerase-transcript-release factor (PTRF) is downregulated, caveolae structures are lost and receptors move onto the cell membrane. This study investigated whether proteins responsible for caveolae formation were affected by the OT peptide, also, how OT treatment affected oxytocin receptor (OTR) movement within living cells.

View Article and Find Full Text PDF

Epstein-Barr virus (EBV) establishes persistent infection, causes infectious mononucleosis, is a major trigger for multiple sclerosis and contributes to multiple cancers. Yet, knowledge remains incomplete about how the virus remodels host B cells to support lytic replication. We previously identified that EBV lytic replication results in selective depletion of plasma membrane (PM) B cell receptor (BCR) complexes, composed of immunoglobulin and the CD79A and CD79B signaling chains.

View Article and Find Full Text PDF

The poor prognosis of pancreatic cancer is often attributed to difficulties of early detection due to a lack of appropriate risk factors. Previously, we demonstrated the presence of Enterococcus faecalis (E. faecalis) in pancreatic juice and tissues obtained from patients with cancers of the duodeno-pancreato-biliary region, suggesting the possible involvement of this bacterial species in chronic and malignant pancreatic diseases.

View Article and Find Full Text PDF

Porcine deltacoronavirus (PDCoV), also known as HKU15, is a swine enteropathogenic virus that is believed to have originated in birds. PDCoV belongs to the genus Deltacoronavirus (DCoV), the members of which have mostly been identified in diverse avian species. We recently reported that chicken or porcine aminopeptidase N (APN), the major cellular receptor for PDCoV, can mediate cellular entry via three pseudotyped retroviruses displaying spike proteins from three avian DCoVs (HKU11, HKU13, and HKU17).

View Article and Find Full Text PDF

Validation of a Coarse-Grained Martini 3 Model for Molecular Oxygen.

J Chem Theory Comput

January 2025

IBiTech - BioMMedA Group, Ghent University, Corneel Heymanslaan 10, Entrance 98, 9000 Gent, Belgium.

Molecular oxygen (O) is essential for life, and continuous effort has been made to understand its pathways in cellular respiration with all-atom (AA) molecular dynamics (MD) simulations of, e.g., membrane permeation or binding to proteins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!