A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Differential effects of AKT1(p.E17K) expression on human mammary luminal epithelial and myoepithelial cells. | LitMetric

AI Article Synopsis

  • A somatic mutation in AKT1 (E17K) was identified, which is primarily found in luminal breast cancers and affects cell growth and behavior.
  • The research focused on comparing genetically matched non-cancerous and cancerous mammary epithelial cells to understand how E17K influences tumor development.
  • Findings revealed that E17K has contrasting effects in different cell types; it inhibits growth in myoepithelial cells but enhances survival and migration in luminal cells, highlighting the role of cellular context in cancer phenotype.

Article Abstract

Recently, we identified a somatic mutation in AKT1, which results in a glutamic acid to lysine substitution (p.Glu17Lys or E17K). E17K mutations appear almost exclusively in breast cancers of luminal origin. Cellular models involving cell lines such as human mammary epithelial and MCF10 are model systems that upon transformation lead to rare forms of human breast cancer. Hence, we studied the effects of E17K using a clinically pertinent luminal cell line model while providing evidence to explain why E17K mutations do not occur in the mammary myoepithelium. Thus the purpose of our study was to perform a functional and differential proteomics study to assess the role of AKT1(E17K) in the development of breast cancer. We used a set of genetically matched nontumorigenic and tumorigenic mammary luminal and myoepithelial cells. We demonstrated that in myoepithelial cells, expression of E17K inhibited growth, migration, and protein synthesis compared with wild-type AKT1. In luminal cells, E17K enhanced cell survival and migration, possibly offering a selective advantage in this type of cell. However, antineoplastic effects of E17K in luminal cells, such as inhibition of growth and protein synthesis, may ultimately be associated with favorable prognosis. Our study illustrates the importance of cellular context in determining phenotypic effects of putative oncogenic mutations.

Download full-text PDF

Source
http://dx.doi.org/10.1002/humu.22100DOI Listing

Publication Analysis

Top Keywords

myoepithelial cells
12
human mammary
8
mammary luminal
8
e17k mutations
8
breast cancer
8
effects e17k
8
protein synthesis
8
luminal cells
8
e17k
7
luminal
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!