Due to a combination of their promising anticancer properties, limited supply from the marine sponge source and their unprecedented molecular architecture, spirastrellolides represent attractive and challenging synthetic targets. A modular strategy for the synthesis of spirastrellolide A methyl ester, which allowed for the initial stereochemical uncertainties in the assigned structure was adopted, based on the envisaged sequential coupling of a series of suitably functionalised fragments; in this first paper, full details of the synthesis of these fragments are described. The pivotal C26-C40 DEF bis-spiroacetal was assembled by a double Sharpless asymmetric dihydroxylation/acetalisation cascade process on a linear diene intermediate, configuring the C31 and C35 acetal centres under suitably mild acidic conditions. A C1-C16 alkyne fragment was constructed by application of an oxy-Michael reaction to introduce the A-ring tetrahydropyran, a Sakurai allylation to install the C9 hydroxyl, and a 1,4-syn boron aldol/directed reduction sequence to establish the C11 and C13 stereocentres. Two different coupling strategies were investigated to elaborate the C26-C40 DEF fragment, involving either a C17-C25 sulfone or a C17-C24 vinyl iodide, each of which was prepared using an Evans glycolate aldol reaction. The remaining C43-C47 vinyl stannane fragment required for introduction of the unsaturated side chain was prepared from (R)-malic acid.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c2ob25100kDOI Listing

Publication Analysis

Top Keywords

synthesis spirastrellolide
8
spirastrellolide methyl
8
methyl ester
8
c26-c40 def
8
stereocontrolled total
4
total synthesis
4
ester expedient
4
expedient construction
4
construction key
4
key fragments
4

Similar Publications

Iodide-bound ruthenium-JOSIPHOS complexes catalyze the redox-neutral C-C coupling of primary alcohols - with the gaseous allene (propadiene) to form enantiomerically enriched homoallylic alcohols - with complete atom-efficiency. Using formic acid as reductant, aldehydes - and - participate in reductive C-C coupling with allene to deliver adducts and with comparable levels of asymmetric induction. Deuterium labeling studies corroborate a mechanism in which alcohol dehydrogenation triggers allene hydroruthenation to form transient allylruthenium-aldehyde pairs that participate in carbonyl addition.

View Article and Find Full Text PDF

The structural complexity and biological importance of macrolide natural products has inspired the development of innovative strategies for their chemical synthesis. With their dense stereochemical content, high level of oxygenation and macrocyclic cores, we viewed the efficient total synthesis of these valuable compounds as an aspirational driver towards developing robust methods and strategies for their construction. Starting out from the initial development of our versatile asymmetric aldol methodology, this personal perspective reflects on an adventurous journey, with all its trials, tribulations and serendipitous discoveries, across the total synthesis, in our group, of a representative selection of six macrolide natural products of marine and terrestrial origin - swinholide A, spongistatin 1, spirastrellolide A, leiodermatolide, chivosazole F and actinoallolide A.

View Article and Find Full Text PDF

Macrocyclic natural products are plentiful in the bacteria, archaea, and eukaryote domains of life. For the significant advantages that they provide to the producing organisms, evolution has learned how to implement various types of macrocyclization reactions into the different biosynthetic pathways and how to effect them with remarkable ease. Mankind greatly benefits from nature's pool, not least because naturally occurring macrocycles or derivatives thereof serve as important drugs for the treatment of many serious ailments.

View Article and Find Full Text PDF

Synthesis and Biological Evaluation of the Southern Hemisphere of Spirastrellolide A and Analogues.

J Org Chem

November 2020

Florida Center for Heterocyclic Compounds and Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States.

The synthesis and biological evaluation of truncated spirastrellolide A analogues comprised of the southern hemisphere against protein phosphatase 2A are described. A convergent synthesis was designed featuring two gold-catalyzed cyclization reactions, specifically, a dehydrative cyclization of monoallylic diols for the synthesis of the tetrahydropyran (A-ring) and a regioselective spiroketalization for the efficient generation of the [6,6]-spiroketal (B, C-ring system). The synthesis of the southern hemisphere of spirastrellolide A was achieved involving the longest linear sequence of 19 steps.

View Article and Find Full Text PDF

Evolution of Anion Relay Chemistry: Construction of Architecturally Complex Natural Products.

Acc Chem Res

April 2020

Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States.

Multicomponent union tactics in which three or more fragments are rapidly connected are highly prized in the construction of architecturally complex natural products. Anion Relay Chemistry (ARC), a multicomponent union tactic, has just such potential to elaborate structurally diverse scaffolds in a single operation with excellent stereochemical control. Conceptually, the ARC tactic can be divided into two main classes: "Through-Bond," by the relay of negative charge through the bonding system of a molecule; and "Through-Space," by the migration of negative charge across space by a transfer agent.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!