There is increasing empirical evidence that individuals utilize social and environmental cues in making decisions as to whether or not to disperse. However, we lack theory exploring the influence of information acquisition and use on the evolution of dispersal strategies and metapopulation dynamics. We used an individual-based, spatially explicit simulation model to explore the evolution of emigration strategies under varying precision of information about the natal patch, cost of information acquisition, and environmental predictability. Our findings show an interesting interplay between information use and the evolved emigration propensity. Lack of information led to higher emigration probabilities in more unpredictable environments but to lower emigration probabilities in constant or highly predictable scenarios. Somewhat-informed dispersal strategies were selected for in most cases, even when the acquisition of information was associated with a moderate reproductive cost. Notably, selection rarely favored investment in acquisition of high-precision information, and the tendency to invest in information acquisition was greatest in predictable environments when the associated cost was low. Our results highlight that information use can affect dispersal in a complex manner and also emphasize that information-acquisition behaviors can themselves come under strong selection, resulting in evolutionary dynamics that are tightly coupled to those of context-dependent behaviors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1086/665004 | DOI Listing |
Cancer Discov
January 2025
The Francis Crick Institute, London, United Kingdom.
While the key aspects of genetic evolution and their clinical implications in clear cell renal-cell carcinoma (ccRCC) are well-documented, how genetic features co-evolve with the phenotype and tumor microenvironment (TME) remains elusive. Here, through joint genomic-transcriptomic analysis of 243 samples from 79 patients recruited to the TRACERx Renal study, we identify pervasive non-genetic intratumor heterogeneity, with over 40% not attributable to genetic alterations. By integrating tumor transcriptomes and phylogenetic structures, we observe convergent evolution to specific phenotypic traits, including cell proliferation, metabolic reprogramming and overexpression of putative cGAS-STING repressors amid high aneuploidy.
View Article and Find Full Text PDFSci Rep
January 2025
RIKEN Center for Brain Science, Brain Image Analysis Unit, Wako-shi, 351-0106, Japan.
Predicting the evolution of white matter hyperintensities (WMH), a common feature in brain magnetic resonance imaging (MRI) scans of older adults (i.e., whether WMH will grow, remain stable, or shrink with time) is important for personalised therapeutic interventions.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Division of Neurological Rehabilitiation, Instituto Nacional de Rehabilitacion Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico.
Stroke is a global health issue caused by reduced blood flow to the brain, which leads to severe motor disabilities. Measuring oxygen levels in the brain tissue is crucial for understanding the severity and evolution of stroke. While CT or fMRI scans are preferred for confirming a stroke due to their high sensitivity, Near-Infrared Spectroscopy (NIRS)-based systems could be an alternative for monitoring stroke evolution.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Molecular Pathobiology, New York University College of Dentistry, 345 E 24th Street, New York, NY 10010, USA.
The notochord is an axial structure required for the development of all chordate embryos, from sea squirts to humans. Over the course of more than half a billion years of chordate evolution, in addition to its structural function, the notochord has acquired increasingly relevant patterning roles for its surrounding tissues. This process has involved the co-option of signaling pathways and the acquisition of novel molecular mechanisms responsible for the precise timing and modalities of their deployment.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Division of Oral Microbiology and Immunology, Department of Operative Dentistry, Periodontology and Preventive Dentistry, Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital, 52074 Aachen, Germany.
The oral-gut axis is a complex system linking the oral cavity and gastrointestinal tract, impacting host health and microbial composition. This study investigates genetic changes and adaptive mechanisms employed by streptococci-one of the few genera capable of colonizing oral and intestinal niches-within the same individual. We conducted whole-genome sequencing (WGS) on 218 streptococcal isolates from saliva and fecal samples of 14 inflammatory bowel disease (IBD) patients and 12 healthy controls.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!