The interplay between calcium metabolism and glycosylation in yeast is largely unknown. In order to clarify this relationship, the effect of a mutation in the KlOCH1 gene, encoding the Golgi α-1,6-mannosyltransferase, on calcium homeostasis was studied in the yeast Kluyveromyces lactis. In particular, the role of the KlMID1 gene, encoding one of the components of the plasma membrane calcium channel (Cch1-Mid1), was investigated. Almost complete suppression of the phenotypes occurring in the mutant strain, ranging from oxidative stress to cell wall alteration, was observed by increased dosage of KlMID1. In addition, the N-glycosylation mutant showed increased calcium accumulation and decreased transcription of KlMID1 and KlCCH1. Moreover, the calcium alterations included an increased expressional profile for the KlPMC1 gene, encoding the vacuolar calcium ion pump. Furthermore, perturbation of endoplasmic reticulum (ER) homeostasis was observed in Kloch1-1 cells. Similarly, down-modulation of calcium signalling genes as well as altered mitochondrial functionality were induced in wild-type cells after treatment with DTT. However, no mitochondrial alteration occurred in the treated cells when KlMID1 was overexpressed. Our results suggest that the ER stress taking place in Kloch1-1 cells appears to be the primary cause of the KlMID1 down-modulation and its resulting effects on the expression of calcium homeostasis genes.

Download full-text PDF

Source
http://dx.doi.org/10.1099/mic.0.056283-0DOI Listing

Publication Analysis

Top Keywords

gene encoding
12
endoplasmic reticulum
8
reticulum homeostasis
8
kluyveromyces lactis
8
calcium
8
calcium homeostasis
8
kloch1-1 cells
8
klmid1
6
klmid1 relevant
4
relevant key
4

Similar Publications

L-DOPA promotes cadmium tolerance and modulates iron deficiency genes in Arabidopsis thaliana.

Physiol Plant

December 2024

Department of Agricultural Chemistry, College of Agriculture and Bioresources, National Taiwan University, Taipei, Taiwan.

Cadmium (Cd) is a toxic element and a widespread health hazard. Preventing its entry into crops is an outstanding issue. 3,4-Dihydroxy-L-phenylalanine (L-DOPA) is a non-proteinogenic amino acid that is secreted by a few legume plants and affects neighboring plants.

View Article and Find Full Text PDF

Background: The mechanisms underlying the resistance of the genus to aminoglycosides are complex, which poses a challenge for the efficient treatment of infectious diseases caused by these pathogens. To help clinicians treat infections more effectively, a more comprehensive understanding of antibiotic resistance mechanisms is urgently needed.

Methods: Plates were streaked to isolate bacteria from the intestinal contents of fish.

View Article and Find Full Text PDF

Kell is one of the most complex blood group systems, with a highly polymorphic genetic background. Extensive allelic variations in the gene affect the encoded erythrocyte surface protein Kell. Genetic variants causing aberrant splicing, premature termination of protein translation, or specific amino acid exchanges lead to a variety of different phenotypes with altered Kell expression levels or changes in the antigenic properties of the Kell protein.

View Article and Find Full Text PDF

Background: Obstructive sleep apnea syndrome (OSAS) is a chronic syndrome, affecting about 1%-5% of children. OSAS is characterized by increased resistance and collapse of the upper airways, with different degrees of severity requiring interventions ranging from lifestyle modifications to surgery. Sympathetic activity is increased in OSAS, and the reduction of disease symptoms, occurring after adenotonsillectomy, correlates with biomarkers indicating a reduced sympathetic response.

View Article and Find Full Text PDF

Opioid-induced respiratory depression: clinical aspects and pathophysiology of the respiratory network effects.

Am J Physiol Lung Cell Mol Physiol

December 2024

The author is retired. The positions and affiliations are those prior to his retirement.

Important insights and consensus remain lacking for risk prediction of opioid-induced respiratory depression (OIRD), reversal of respiratory depression (RD), the pathophysiology of OIRD, and which sites make the most significant contribution to its induction. The ventilatory response to inhaled carbon dioxide is the most sensitive biomarker of OIRD. To accurately predict respiratory depression (RD), a multivariant RD prospective trial using continuous capnograph and oximetry examining 5 independent variables: age ≥60, sex, opioid naivety, sleep disorders, and chronic heart failure (PRODIGY trial), was undertaken.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!