DNA β satellites are circular single-stranded molecules associated with some monopartite begomoviruses in the family Geminiviridae. They co-infect with their helper viruses to induce severe disease in economically important crops. The βC1 protein encoded by DNA β is a pathogenicity determinant and has been reported to suppress post-transcriptional gene silencing (PTGS). The βC1 proteins from various DNA β molecules show low levels of amino acid sequence conservation. We show here that the βC1 from DNA β associated with Cotton leaf curl Multan virus (CLCuMV) is a suppressor of systemic PTGS. When this DNA β satellite co-inoculated with a heterologous helper virus, Tomato leaf curl virus (ToLCV), reduced the level of ToLCV siRNA and this was associated with a higher level of virus accumulation in infected tobacco plants. This may be a mechanism by which βC1 protects a heterologous virus from host gene silencing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.virusres.2012.03.012 | DOI Listing |
Mol Ther
December 2024
Laboratory of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Center for Advanced Modalities and DDS, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Center for Infectious Disease Education and Research, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Global Center for Medical Engineering and Informatics, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, The Research Foundation for Microbial Diseases of Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan. Electronic address:
Messenger RNA vaccines based on lipid nanoparticles (mRNA-LNPs) are promising vaccine modalities. However, mRNA-LNP vaccines frequently cause adverse reactions such as swelling and fever in humans, partly due to the inflammatory nature of LNP. Modification of the ionizable lipids used in LNPs is one approach to avoid these adverse reactions.
View Article and Find Full Text PDFNat Commun
November 2024
Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA.
PLoS Negl Trop Dis
November 2024
School of Medical Technology and Translational Medicine, Hunan Normal University, Changsha, China.
Background: Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that is responsible for Chikungunya fever, which is characterized by fever, rash, and debilitating polyarthralgia. Since its re-emergence in 2004, CHIKV has continued to spread to new regions and become a severe health threat to global public. Development of safe and single dose vaccines that provide durable protection is desirable to control the spread of virus.
View Article and Find Full Text PDFPLoS Pathog
September 2024
Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America.
Current influenza vaccine strategies have yet to overcome significant obstacles, including rapid antigenic drift of seasonal influenza viruses, in generating efficacious long-term humoral immunity. Due to the necessity of germinal center formation in generating long-lived high affinity antibodies, the germinal center has increasingly become a target for the development of novel or improvement of less-efficacious vaccines. However, there remains a major gap in current influenza research to effectively target T follicular helper cells during vaccination to alter the germinal center reaction.
View Article and Find Full Text PDFJ Virol
September 2024
Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!