Genetic and phenotypic differentiation between the critically endangered Balearic shearwater and neighboring colonies of its sibling species.

J Hered

Population Ecology Group, Institut Mediterrani d'Estudis Avançats IMEDEA (CSIC-UIB), Miquel Marque`s 21, 07190 Esporles, Mallorca, Spain.

Published: August 2012

Understanding the demographic and evolutionary processes within and between populations is essential for developing effective management strategies. Thus, for establishing good conservation policies both genetic and phenotypic studies are crucial. We carried out an integrated analysis of genetic and phenotypic characters of the critically endangered Balearic shearwater Puffinus mauretanicus (182 individuals) and compared them with those of 2 nearby colonies of Yelkouan shearwater P. yelkouan (40 individuals), a species for which hybridization has been hypothesized. The results of the microsatellite analyses were compared with previous mitochondrial DNA analyses. Genetic variability was low in the Balearic shearwater and high levels of inbreeding were revealed at local scale. Most dispersal in Balearic shearwaters was to neighboring sites, even though low levels of population structure were found. The admixture between the 2 species was much higher at nuclear than at mitochondrial level, but phenotypic characters would seem to indicate that a lower level of admixture exists. Individual nuclear DNA, mtDNA, and phenotype did not match at individual level, showing that migration alone cannot explain this phenomenon. We suggest that these 2 young shearwater species could have been involved in processes of divergence and admixing. However, due to the longer coalescence times in nuclear markers, incomplete lineage sorting cannot be ruled out.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jhered/ess010DOI Listing

Publication Analysis

Top Keywords

genetic phenotypic
12
balearic shearwater
12
critically endangered
8
endangered balearic
8
phenotypic characters
8
shearwater
5
genetic
4
phenotypic differentiation
4
differentiation critically
4
balearic
4

Similar Publications

Periodontal diseases in Down syndrome during childhood: a scoping review.

BMC Oral Health

January 2025

Université Paris Cité, Laboratory URP 2496 Orofacial Pathologies, Imaging, and Biotherapies, Faculty of odontology, Montrouge, France.

Background: Down syndrome (DS) is a genetic condition that involves the deregulation of immune function and is characterized by a proinflammatory phenotype leading to an impaired response to infections. Periodontitis is a highly prevalent chronic inflammatory disease. It has been shown that adults and teenagers with DS are more susceptible to this disease, but a similar correlation in DS children remains elusive.

View Article and Find Full Text PDF

Background: Children with non-syndromic cleft lip with or without palate (CL ± P) may present alterations in dental development. The purpose of this cross-sectional study was to compare the dental age (DA) between children with and without CL ± P, and whether single nucleotide polymorphisms (SNPs) in genes encoding growth factors are associated with DA variations.

Methods: Children aged between 5 and 14 years with and without CL ± P were recruited to participate in this study.

View Article and Find Full Text PDF

Assessment of cardiac iron deposition and genotypic classification in pediatric beta-thalassemia major: the role of cardiac MRI.

BMC Med Imaging

January 2025

Department of Radiology, Shenzhen Children's Hospital, Shantou University Medical College, 7019 Yitian Road, Futian District, Shenzhen, 518038, China.

Background: Beta thalassemia major (β-TM) is a severe genetic anemia with considerable phenotypic heterogeneity. This study investigated whether genotype correlates with distinct myocardial iron overload patterns, assessed by cardiovascular magnetic resonance (CMR) T2* values.

Methods: CMR data for cardiac iron deposition evaluation, which recruited pediatric participants between January 2021 and December 2024, were analyzed with CVI42.

View Article and Find Full Text PDF

The Mendelian Phenotype Search Engine (MPSE), a clinical decision support tool using Natural Language Processing and Machine Learning, helped neonatologists expedite decisions to whole genome sequencing (WGS) to diagnose patients in the neonatal intensive care unit. After the MPSE was introduced, utilization of WGS increased, time to ordering WGS decreased, and WGS diagnostic yield increased.

View Article and Find Full Text PDF

We have previously developed a transcription-based bacterial three-hybrid (B3H) assay as a genetic approach to probe RNA-protein interactions inside of E. coli cells. This system offers a straightforward path to identify and assess the consequences of mutations in RBPs with molecular phenotypes of interest.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!