A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Electrokinetic and bioactive properties of CuO∙SiO2 oxide composites. | LitMetric

CuO∙SiO(2) hybrid oxide precipitated on a semi-technical scale was thoroughly characterised in terms of physicochemical properties. Its particle size distribution and SEM analysis were performed to establish dispersion and surface morphology. Chemical analysis provided information on the content of CuO and SiO(2) oxides in the hybrid systems. The oxide systems were also subjected to elemental analysis. Zeta potential determinations were evaluated to obtain information regarding the interactions between colloidal particles. The stability of copper silicates' water dispersions was estimated on the basis of zeta potential measurements. The obtained oxide systems were used as components of polymer composites with polyester resins, which were subjected to mechanical tests and bactericidal tests against Pseudomonas aeruginosa, a well known biofilm-forming microorganism. The anti-adhesive activity of the CuO·SiO(2) enriched polymers was assessed using a 9-degree scale of adhesion. A significant reduction in the P. aeruginosa biofilm development rate was achieved for Palatal A 400-01 resins enriched with both 2 and 8 phr of the filler. In the case of Aropol M 105 TB resins the introduction of CuO∙SiO(2) caused inhibition of bacterial colonisation but to a smaller extent. These results strongly indicate that the biological activity of Cu was maintained. The release of copper ions into the local environment was examined by atomic absorption spectrometry (AAS). Maximum values of 1.621 and 5.934 mg/dm(3) of released copper were detected. The surface composition of both resins studied by energy dispersive X-ray spectroscopy (EDS) contributed to the data suggesting homogenous distribution of Si; however copper seemed to form local aggregates. The presented results may be of great significance for those dealing with materials tailored for specific needs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioelechem.2012.03.003DOI Listing

Publication Analysis

Top Keywords

oxide systems
8
zeta potential
8
electrokinetic bioactive
4
bioactive properties
4
properties cuo∙sio2
4
oxide
4
cuo∙sio2 oxide
4
oxide composites
4
composites cuo∙sio2
4
cuo∙sio2 hybrid
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!