The effect of combination treatment with trenbolone acetate and estradiol-17β on skeletal muscle expression and plasma concentrations of oxytocin in sheep.

Domest Anim Endocrinol

Commonwealth Scientific and Industrial Research Organisation Livestock Industries, Queensland Bioscience Precinct, St Lucia QLD 4067, Australia.

Published: July 2012

Implantation of trenbolone acetate (TBA) in conjunction with estradiol-17β (E(2)) increases growth, feed conversion efficiency, and carcass leanness in cattle. Our previous study in Brahman steers suggested that the neuropeptide hormone oxytocin (OXT) may be involved in increasing muscle growth after TBA-E(2) treatment. The present study aimed to determine whether OXT mRNA expression in the longissimus muscle (LM) is also up-regulated in TBA-E(2-)implanted wethers as has been found in steers. Real-time quantitative PCR was used to measure the expression of the gene encoding the OXT precursor, three genes with increased expression in the LM muscle of TBA-E(2)-treated steers, MYOD1 (muscle transcription factor), GREB1 (growth regulation by estrogen in breast cancer 1), and WISP2 (Wnt-1 inducible signaling pathway protein 2), and two genes encoding IGF pathway proteins, IGF1, IGFR, in the LM of both untreated and TBA-E(2)-treated wethers. The expression of OXT mRNA in wethers that received the TBA-E(2) treatment was increased ~4.4-fold (P = 0.01). TBA-E(2) treatment also induced a 2.3-fold increase in circulating OXT (P = 0.001). These data, together with the observation that untreated wethers had much higher baseline concentrations of circulating OXT than previously observed in steers, suggest that wethers and steers have quite different OXT hormone systems. TBA-E(2) treatment had no effect on the expression of IGF1, IGFR, and the muscle regulatory gene MYOD1 mRNA levels in wethers (P ≥ 0.15), but there was an increase in the expression of the two growth-related genes, GREB1 (P = 0.001) and WISP2 (P = 0.04). Both genes are common gene targets for both the estrogen and androgen signaling pathways. Consequently, their actions may contribute to the positive interaction between TBA and E(2) on additive improvements on muscle growth.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.domaniend.2012.02.004DOI Listing

Publication Analysis

Top Keywords

tba-e2 treatment
16
trenbolone acetate
8
muscle growth
8
oxt mrna
8
wethers steers
8
igf1 igfr
8
circulating oxt
8
muscle
7
expression
7
oxt
7

Similar Publications

British × Continental steers (n = 168; 7 pens/treatment; initial BW = 362 kg) were used to evaluate the effect of dose/payout pattern of trenbolone acetate (TBA) and estradiol-17β (E2) and feeding of zilpaterol hydrochloride (ZH) on serum urea-N (SUN), NEFA, IGF-I, and E2 concentrations and LM mRNA expression of the estrogen (ER), androgen (ANR), IGF-I (IGF-IR), β1-adrenergic (β1-AR), and β2-adrenergic (β2-AR) receptors and IGF-I. A randomized complete block design was used with a 3 × 2 factorial arrangement of treatments. Main effects were implant (no implant [NI], Revalor-S [REV-S; 120 mg TBA + 24 mg E2], and Revalor-XS [REV-X; 200 mg TBA + 40 mg E2]) and ZH (0 or 8.

View Article and Find Full Text PDF

We previously showed that a combined trenbolone acetate (TBA)/estradiol-17beta (E2) implant significantly increases IGF-I mRNA levels in the LM of feedlot steers by 28 d after implantation. Here we compare the effects of E2 (25.7 mg), TBA (120 mg), and combined TBA (120 mg)/E2 (24 mg) implants on IGF-I, IGF-I receptor (IGFR-1), estrogen receptor (ER)-alpha and androgen receptor (AR) mRNA levels in the LM of steers.

View Article and Find Full Text PDF

Treatment of lambs (initial BW 28 kg) for 24 d with a combined implant containing 40 mg of trenbolone acetate (TBA) and 8 mg of estradiol (E2) increased ADG 25% (P < .05, n = 8) and feed efficiency 23% (P < .05, n = 2) compared with unimplanted lambs.

View Article and Find Full Text PDF

Objectives of this study were to analyze alterations in circulating IGF-I and insulin-like growth factor binding protein (IGFBP) concentrations due to administration of a combined trenbolone acetate (TBA) and estradiol (E2) implant. This study was part of a larger serial slaughter study in which 64 large-framed (394.1 kg) crossbred steers were randomly assigned to one of four pens.

View Article and Find Full Text PDF

Objectives of this study were to determine the influence of trenbolone acetate (TBA) and estradiol (E2) in a combined implant on feedlot performance, carcass characteristics, and carcass composition in finishing steers. Sixty-four large-framed (394.1 kg) crossbred steers were randomly assigned to one of four pens.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!