Background: Caveolin-1 (CAV-1), encoding the structural component of cellular caveolae, is a suggested tumor suppressor gene involved in cell signalling. Aberrant promoter methylation of CAV-1 is associated with inactivation of expression. We previously observed CAV-1 mutations in breast cancers and therefore devised this study to examine the hypermethylation status of the promoter region of CAV-1 with reference to breast cancer progression and development.
Methods: Hypermethylation status of CAV-1 was analyzed by methylation specific PCR. Loss of expression of the CAV-1 gene was further evaluated by semi-quantitative rt-PCR.
Results: 28/130 (21.5%) breast cancer cases showed promoter hypermethylation with reduced CAV-1 expression levels when compared with adjacent normal breast tissue. CAV-1 gene hypermethylation was significantly related to menopausal status, histopathological grade and age.
Conclusion: The rationale of our study is that CAV-1 gene is transcriptionally repressed in breast cancer cells due to hypermethylation. Our results reveal that promoter hypermethylation and loss of expression of the CAV-1 gene is an important alternative mechanism for inactivation of CAV-1 leading to complete gene silencing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.7314/apjcp.2012.13.1.371 | DOI Listing |
bioRxiv
December 2024
Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX.
Cellular plasticity is a hallmark function of cancer, but many of the underlying mechanisms are not well understood. In this study, we identify Caveolin-1, a scaffolding protein that organizes plasma membrane domains, as a context-dependent regulator of survival signaling in Ewing sarcoma (EwS). Single cell analyses reveal a distinct subpopulation of EwS cells, which highly express the surface marker CD99 as well as Caveolin-1.
View Article and Find Full Text PDFPhytomedicine
January 2025
Department of Rheumatology and Immunology, Nanfang Hospital, Southern Medical University, Guangzhou, China. Electronic address:
Background: Rheumatoid arthritis (RA) is a common autoimmune disease with a high disability rate. Accumulating studies suggest that neutrophil extracellular traps (NETs) play a crucial role in the pathogenesis of RA and targeting NETs has emerged as a potential therapeutic strategy for RA. As a traditional Chinese medicine, Guizhi-Shaoyao-Zhimu Decoction (GSZD) has exhibited good efficacy in the treatment of rheumatoid arthritis (RA), while the underly mechanism especially the possibility that GSZD alter NETs formation to relieve RA remains unknown.
View Article and Find Full Text PDFFront Pharmacol
November 2024
The Third Clinical Medical College of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
Background: Postmenopausal osteoporosis (PMOP) is a serious condition that affects elderly individuals. Our previous study revealed that Yigu decoction (YGD) effectively improved bone mineral density (BMD) in elderly individuals, but the mechanism underlying this effect remains unclear. In this study, we investigated the relationships among YGD, microRNAs (miRNAs), and bone metabolism by assessing the effects of YGD on the miRNA levels in patient plasma to provide a scientific basis for treating PMOP with YGD.
View Article and Find Full Text PDFInt J Nanomedicine
November 2024
Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.
Background: Nebulization of hypoxic human umbilical cord mesenchymal stem cell-derived extracellular vesicles (Hypo-EVs) can suppress airway inflammation and remodeling in a chronic asthmatic mouse; however, the exact mechanism remains unclear. Recently, airway epithelial barrier defects have been regarded as crucial therapeutic targets in asthma. The aim of this study was to investigate whether and how Hypo-EVs protect against the disruption of the airway epithelial barrier under asthmatic conditions.
View Article and Find Full Text PDFMater Today Bio
October 2024
Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China.
Tumorigenesis and metastasis are highly dependent on the interactions between the tumor and the surrounding microenvironment. In 3D matrix, the fibrous structure of the extracellular matrix (ECM) undergoes dynamic remodeling during tumor progression. In particular, during the late stage of tumor development, the fibers become more aggregated and oriented.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!