The identification of defects and their controlled generation in titanate nanostructures is a key to their successful application in photoelectronic devices. We comprehensively explored the effect of vacuum annealing on morphology and composition of Na(2)Ti(3)O(7) nanowires and protonated H(2)Ti(3)O(7) nanoscrolls using a combination of scanning electron microscopy, Auger and Fourier-transform infrared (FT-IR) spectroscopy, as well as ab initio density functional theory (DFT) calculations. The observation that H(2)Ti(3)O(7) nanoscrolls are more susceptible to electronic reduction and annealing-induced n-type doping than Na(2)Ti(3)O(7) nanowires is attributed to the position of the conduction band minimum. It is close to the vacuum level and, thus, favors the Fermi level-induced compensation of donor states by cation vacancies. In agreement with theoretical predictions that suggest similar formation energies for oxygen and sodium vacancies, we experimentally observed the annealing induced depletion of sodium from the surface of the nanowires.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la301129v | DOI Listing |
Scaffolds are of great interest in tissue engineering associated with regenerative medicine owing to their ability to mimic biological structures and provide support for new tissue formation. Several techniques are used to produce biological scaffolds; among them, far-field electrospinning (FFES) process is widely used due to its versatility in producing promising structures similar to native tissues owing to the electrospun nanofibers. On the other hand, near-field electrospinning (NFES) has been investigated due to the possibility of creating scaffolds with suitable architecture for their use in specific biological tissues.
View Article and Find Full Text PDFMaterials (Basel)
November 2024
Center of Physics of Minho and Porto Universities (CF-UM-UP), Laboratory for Materials and Emergent Technologies (LaPMET), Departamento de Física, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
Laser ablation was used to successfully fabricate multiferroic bilayer thin films, composed of BaTiO (BTO) and CoFeO (CFO), on highly doped (100) Si substrates. This study investigates the influence of BaTiO layer thickness (50-220 nm) on the films' structural, magnetic, and dielectric properties. The dense, polycrystalline films exhibited a tetragonal BaTiO phase and a cubic spinel CoFeO layer.
View Article and Find Full Text PDFHeliyon
October 2024
Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632 014, Tamil Nadu, India.
Int J Nanomedicine
December 2024
Department of Abdominal Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China.
Sonodynamic therapy (SDT) utilizes specific sound waves to activate sonosensitizers, generating localized biological effects to eliminate tumor cells. With advancements in nanomedicine, the application of nano-acoustic sensitizers has significantly advanced the development of SDT. BaTiO (BTO), an inorganic nano-acoustic sensitizer, possesses light refraction characteristics and a high dielectric constant, and can generate an electric field under ultrasound (US) stimulation.
View Article and Find Full Text PDFChem Asian J
November 2024
College of Intelligent Manufacturing and Electrical Engineering, Guangzhou Institute of Science and Technology, Guangzhou, 510540, China.
The photocatalytic proficiency of BiTiO is hindered by its inadequate solar energy harnessing capability and swift electron-hole recombination dynamics. In the investigation, the study innovated Bi metal oxide heterostructures by embedding Bi nanoparticle-modified BiTiO composites, systematically synthesizing a suite of Bi/BT materials through meticulous tuning of the Bi and Ti precursor ratios. Notably, the Bi/BT-2 series was examined for its photocatalytic performance in tetracycline (TC) degradation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!