On the evaluation of the non-interacting kinetic energy in density functional theory.

J Chem Phys

Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom.

Published: April 2012

The utility of both an orbital-free and a single-orbital expression for computing the non-interacting kinetic energy in density functional theory is investigated for simple atomic systems. The accuracy of both expressions is governed by the extent to which the Kohn-Sham equation is solved for the given exchange-correlation functional and so special attention is paid to the influence of finite Gaussian basis sets. The orbital-free expression is a statement of the virial theorem and its accuracy is quantified. The accuracy of the single-orbital expression is sensitive to the choice of Kohn-Sham orbital. The use of particularly compact orbitals is problematic because the failure to solve the Kohn-Sham equation exactly in regions where the orbital has decayed to near-zero leads to unphysical behaviour in regions that contribute to the kinetic energy, rendering it inaccurate. This problem is particularly severe for core orbitals, which would otherwise appear attractive due to their formally nodeless nature. The most accurate results from the single-orbital expression are obtained using the relatively diffuse, highest occupied orbitals, although special care is required at orbital nodes.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.3700436DOI Listing

Publication Analysis

Top Keywords

kinetic energy
12
single-orbital expression
12
non-interacting kinetic
8
energy density
8
density functional
8
functional theory
8
kohn-sham equation
8
evaluation non-interacting
4
theory utility
4
utility orbital-free
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!