Immature mammalian oocytes reside in ovarian follicles with junctionally coupled granulosa cells. When released from a currently undefined meiotic arresting influence, these oocytes resume meiosis to progress from late diplotene (germinal vesicle stage) through the first meiotic division to metaphase II. Oocytes remain at metaphase II until fertilization activates them to complete meiosis. This review summarizes ultrastructural events that occur during meiotic maturation in mammals. Developmental correlates that promise a clearer understanding of regulatory mechanisms operating to control maturation are emphasized. By use of TEM of thin sections, freeze-fracture analysis, and replicated oocyte cortical patches, we demonstrate stage-specific changes in the oocyte nucleus, reorganization of cytoplasmic organelles, correlations between oocyte maturational commitment and the junctional integrity of associated granulosa cells, and definition of the components comprising the oocyte cortical cytoplasm.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jemt.1060160402DOI Listing

Publication Analysis

Top Keywords

meiotic maturation
8
mammalian oocytes
8
granulosa cells
8
oocyte cortical
8
ultrastructural correlates
4
meiotic
4
correlates meiotic
4
maturation mammalian
4
oocytes
4
oocytes immature
4

Similar Publications

Purpose: This study aimed to investigate the molecular mechanisms associated with chromosome segregation errors caused by intrinsic oxidative stress during in vitro oocyte maturation (IVM) using oocytes from -deficient (KO) mice.

Methods: Ovulated or in vitro matured cumulus-cells oocyte complexes (COCs) were collected from wild-type (WT) and KO mice and evaluated chromosome alignment, chromosome segregation, meiotic progression, and BUBR1 and REC8 protein expression levels.

Results: In 21% O IVM, the KO had significantly higher frequencies of chromosome misalignment and segregation errors compared to the WT, and they also reached Germinal Vesicle Break Down (GVBD) and M I stages peak earlier and showed a shorter M I stage residence time compared to the WT.

View Article and Find Full Text PDF

Ustiloxin A impairs oocyte quality by disrupting organelles function.

Environ Pollut

January 2025

Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs /Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China. Electronic address:

Oocyte quality is pivotal for fertilization and early embryonic development. Ustiloxin A (UA), is an emerging mycotoxin that has been frequently detected in rice and paddy. Because UA has been reported to be phytotoxic and cytotoxic, it poses a potential hazard to human and animal health.

View Article and Find Full Text PDF

Background: Numerous pathogenic variants causing human oocyte maturation arrest have been reported on the primate-specific TUBB8 gene. The main etiology is the dramatic reduction of tubulin α/β dimer, but still large numbers of variants remain unexplained.

Methods: Using microinjection mRNA and genome engineering to reintroduce the conserved pathogenic missense variants into oocytes or in generating TUBB8 variant knock-in mouse models, we investigated that the human deleterious variants alter microtubule nucleation and spindle assembly during meiosis.

View Article and Find Full Text PDF

Transcriptional Integration of Meiotic Prophase I Progression and Early Oocyte Differentiation.

bioRxiv

January 2025

MCB Graduate Program, Cell Biology, and Biochemistry, Brown University, 70 Ship St., Box G-E4, Providence, RI 02903, USA.

Female reproductive senescence results from the regulated depletion of a finite pool of oocytes called the ovarian reserve. This pool of oocytes is initially established during fetal development, but the oocytes that comprise it must remain quiescent for decades until they are activated during maturation in adulthood. In order for developmentally competent oocytes to populate the ovarian reserve they must successfully initiate both meiosis and oogenesis.

View Article and Find Full Text PDF

Mitochondrial Rho-GTPase 1 (MIRO1) is an outer mitochondrial membrane protein which regulates mitochondrial transport and mitophagy in mitosis. In present study, we reported the crucial roles of MIRO1 in mammalian oocyte meiosis and its potential relationship with aging. We found that MIRO1 expressed in mouse and porcine oocytes, and its expression decreased in aged mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!