The influence of stop consonants' perceptual features on the Articulation Index model.

J Acoust Soc Am

Mathworks, 3 Apple Hill Drive, Natick, Massachusetts 01760, USA.

Published: April 2012

Studies on consonant perception under noise conditions typically describe the average consonant error as exponential in the Articulation Index (AI). While this AI formula nicely fits the average error over all consonants, it does not fit the error for any consonant at the utterance level. This study analyzes the error patterns of six stop consonants /p, t, k, b, d, g/ with four vowels (/α/, /ε/, /I/, /ae/), at the individual consonant (i.e., utterance) level. The findings include that the utterance error is essentially zero for signal to noise ratios (SNRs) at least -2 dB, for >78% of the stop consonant utterances. For these utterances, the error is essentially a step function in the SNR at the utterance's detection threshold. This binary error dependence is consistent with the audibility of a single binary defining acoustic feature, having zero error above the feature's detection threshold. Also 11% of the sounds have high error, defined as ≥ 20% for SNRs greater than or equal to -2 dB. A grand average across many such sounds, having a natural distribution in thresholds, results in the error being exponential in the AI measure, as observed. A detailed analysis of the variance from the AI error is provided along with a Bernoulli-trials analysis of the statistical significance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3339505PMC
http://dx.doi.org/10.1121/1.3682054DOI Listing

Publication Analysis

Top Keywords

error
11
error exponential
8
consonant utterance
8
utterance level
8
error essentially
8
detection threshold
8
consonant
5
influence consonants'
4
consonants' perceptual
4
perceptual features
4

Similar Publications

Spherical tanks have been predominantly used in process industries due to their large storage capability. The fundamental challenges in process industries require a very efficient controller to control the various process parameters owing to their nonlinear behavior. The current research work in this paper aims to propose the Approximate Generalized Time Moments (AGTM) optimization technique for designing Fractional-Order PI (FOPI) and Fractional-Order PID (FOPID) controllers for the nonlinear Single Spherical Tank Liquid Level System (SSTLLS).

View Article and Find Full Text PDF

In this paper, we studied the diffusion characteristics and distribution patterns of gas leakage in soil from buried natural gas pipelines. The three-dimensional simulation model of buried natural gas pipeline leakage was established using Fluent software. Monitoring points of gas leakage mole fraction were set up at different locations, and the influence of buried depth and pressure factors on the mole fraction and diffusion of leaked gas was analyzed.

View Article and Find Full Text PDF

Establishing normative values and understanding how proprioception varies among body parts is crucial. However, the variability across individuals, especially adolescents, makes it difficult to establish norms. This prevents further investigation into classifying patients with abnormal proprioception.

View Article and Find Full Text PDF

Urban rail transit systems, represented by subways, have significantly alleviated the traffic pressure brought by urbanization and have addressed issues such as traffic congestion. However, as a commonly used construction method for subway tunnels, shield tunneling inevitably disturbs the surrounding soil, leading to uneven ground surface settlement, which can impact the safety of nearby buildings. Therefore, it is crucial to promptly obtain and predict the ground surface settlement induced by shield tunneling construction to enable safety warnings and evaluations.

View Article and Find Full Text PDF

Design of integrated radar and communication system based on solvable chaotic signal.

Sci Rep

December 2024

Shaanxi Key Laboratory of Complex System Control and Intelligent Informantion Processing, Xi'an University of Technology, Xi'an 710048, China.

In the integrated radar and communication system (IRCS), the design of signal that can simultaneously satisfy the radar detection and communication transmission is very important and difficult. Recently, some new properties of a class of solvable chaotic system have been studied for wireless applications, such as low bit error rate (BER) wireless communications and low cost target detection. In this paper, a novel IRCS based on the chaotic signal is proposed, and the performance of proposed scheme is analyzed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!