Aim: This article is a report of an exploration of the lived experience of being a spouse to a person living with advanced Parkinson's disease, before and during the first year of deep brain stimulation.

Background: Parkinson's disease is a chronic progressive neurodegenerative disease. It has a profound impact on the everyday life for patients and spouses. Deep brain stimulation is offered with the aim of reducing symptoms of Parkinson's disease. The treatment is known to improve quality of life for patients, but little is known of how spouses experience life following their partners' treatment.

Design: A longitudinal interview study with a hermeneutic phenomenological approach.

Method: Ten spouses were included in the study. Data were gathered in 2007-2008, through qualitative in-depth interviews with spouses once before and three times during the first year of their partners' treatment with Deep Brain Stimulation. Data collection and data analysis were influenced by the hermeneutic phenomenological methodology of van Manen.

Findings: The uniting theme 'Solidarity - the base for joined responsibility and concern' was the foundation for the relationship between spouses and their partners. Before treatment, the theme 'Living in partnership' was dominant. After treatment two dichotomous courses were described 'A sense of freedom embracing life' and 'The challenge of changes and constraint'.

Conclusion: Spouses are deeply involved in their partners' illness and their experience of life is highly affected by their partners' illness, both before and after deep brain stimulation. The relationship is founded on solidarity and responsibility, which emphasizes spouses' need to be informed and involved in the process following Deep Brain Stimulation.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-2648.2012.06012.xDOI Listing

Publication Analysis

Top Keywords

deep brain
24
brain stimulation
20
hermeneutic phenomenological
12
parkinson's disease
12
advanced parkinson's
8
life patients
8
patients spouses
8
experience life
8
partners' illness
8
deep
6

Similar Publications

Sleep stages classification one of the essential factors concerning sleep disorder diagnoses, which can contribute to many functional disease treatments or prevent the primary cognitive risks in daily activities. In this study, A novel method of mapping EEG signals to music is proposed to classify sleep stages. A total of 4.

View Article and Find Full Text PDF

Inflammation is becoming increasingly recognised as a core feature of dementia with evidence indicating that its role may vary and adapt across different stages of the neurodegenerative process. This study aimed to investigate whether the associations of high-sensitivity C-reactive protein (hs-CRP) with neuropsychological performance (verbal memory, executive function, processing speed) and cerebral white matter hyperintensities (WMHs) differed between older adults with subjective cognitive decline (SCD;  = 179) and mild cognitive impairment (MCI;  = 286). Fasting serum hs-CRP concentrations were grouped into low (<1.

View Article and Find Full Text PDF

The hippocampus is a small, yet intricate seahorse-shaped tiny structure located deep within the brain's medial temporal lobe. It is a crucial component of the limbic system, which is responsible for regulating emotions, memory, and spatial navigation. This research focuses on automatic hippocampus segmentation from Magnetic Resonance (MR) images of a human head with high accuracy and fewer false positive and false negative rates.

View Article and Find Full Text PDF

Applying normative atlases in deep brain stimulation: a comprehensive review.

Int J Surg

December 2024

Department of Neurosurgery, Stanford University, Stanford, Palo Alto, California, USA.

Deep brain stimulation (DBS) has emerged as a crucial therapeutic strategy for various neurological and psychiatric disorders. Precise target localization is essential for optimizing therapeutic outcomes, necessitating advanced neuroimaging techniques. Normative atlases provide standardized references for accurate electrode placement, enhancing treatment customization and efficacy.

View Article and Find Full Text PDF

Background: Cerebral autoregulation is a robust regulatory mechanism that stabilizes cerebral blood flow in response to reduced blood pressure, thereby preventing cerebral ischaemia. Scientists have long believed that cerebral autoregulation also stabilizes cerebral blood flow against increases in intracranial pressure, which is another component that determines cerebral perfusion pressure. However, this idea was inconsistent with the complex pathogenesis of normal pressure hydrocephalus, which includes components of chronic cerebral ischaemia due to mild increases in intracranial pressure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!