A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Tissue engineering for total meniscal substitution: animal study in sheep model--results at 12 months. | LitMetric

The aim of the study was to investigate the use of a hyaluronic acid/polycaprolactone material for meniscal tissue engineering and to evaluate the tissue regeneration after the augmentation of the implant with expanded autologous chondrocytes. Eighteen skeletally mature sheep were treated. The animals were divided into three groups: cell-free scaffold, scaffold seeded with autologous chondrocytes, and meniscectomy alone. The implant was sutured to the capsule and to the meniscal ligament. At a 12-month gross assessment, histology and histomorphometry were used to assess the meniscus implant, knee joint, and osteoarthritis development. All implants showed excellent capsular ingrowth at the periphery. The implant gross assessment showed significant differences between cell-seeded and cell-free groups (p=0.011). The histological analysis indicated a cellular colonization throughout the implanted constructs. Avascular cartilaginous tissue formation was significantly more frequent in the cell-seeded constructs. Joint gross assessment showed that sheep treated with scaffold implantation achieved a significant higher score than those underwent meniscectomy (p<0.0005), and the Osteoarthritis Research Society International score showed that osteoarthritic changes were significantly less in the cell-seeded group than in the meniscectomy group (p=0.047), even though results were not significantly superior to those of the cell-free scaffold. Seeding of the scaffold with autologous chondrocytes increases its tissue regeneration capacity, providing a better fibrocartilaginous tissue formation. The study suggests the potential of the novel hyaluronic acid/polycaprolactone scaffold for total meniscal substitution, although this approach has to be further improved before being applied into clinical practice.

Download full-text PDF

Source
http://dx.doi.org/10.1089/ten.TEA.2011.0572DOI Listing

Publication Analysis

Top Keywords

gross assessment
12
tissue engineering
8
autologous chondrocytes
8
sheep treated
8
tissue
4
engineering total
4
total meniscal
4
meniscal substitution
4
substitution animal
4
animal study
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!