Nicotinic acid adenine dinucleotide phosphate (NAADP) is a potent second messenger that mobilizes Ca(2+) from the acidic endolysosomes by activation of the two-pore channels TPC1 and TPC2. The channel properties of human TPC1 have not been studied before, and its cellular function is not known. In the present study, we characterized TPC1 incorporated into lipid bilayers. The native and recombinant TPC1 channels are activated by NAADP. TPC1 activity requires acidic luminal pH and high luminal Ca(2+). With Ba(2+) as the permeable ion, luminal Ca(2+) activates TPC1 with an apparent K(m) of 180 μm. TPC1 operates in two tightly coupled conductance states of 47 ± 8 and 200 ± 9 picosiemens. Importantly, opening of the large conductance markedly increases the small conductance mean open time. Changes in membrane potential from 0 to -60 mV increased linearly both the small and the large conductances and NP(o), indicating that TPC1 is regulated by voltage. Intriguingly, the apparent affinity for activation of TPC1 by its ligand NAADP is not constant. Rather, hyperpolarization increases the apparent affinity of TPC1 for NAADP by 10 nm/mV. The concerted regulation of TPC1 activity by luminal Ca(2+) and by membrane potential thus provides a potential mechanism to explain NAADP-induced Ca(2+) oscillations. These findings reveal unique properties of TPC1 to explain its role in Ca(2+) oscillations and cell function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3370221PMC
http://dx.doi.org/10.1074/jbc.M112.359612DOI Listing

Publication Analysis

Top Keywords

tpc1
13
membrane potential
12
luminal ca2+
12
nicotinic acid
8
acid adenine
8
adenine dinucleotide
8
dinucleotide phosphate
8
phosphate naadp
8
tpc1 activity
8
apparent affinity
8

Similar Publications

Objective: Thyroid cancer (TC) therapy, which is routinely used at present, can improve patients' survival rates. However, lymph node metastasis results in a higher degree of TC malignancy in patients who experience recurrence and/or death. The elucidation of new mechanisms of TC metastasis can help identify new therapeutic targets.

View Article and Find Full Text PDF

Background: SOX13 is a transcription factor belonging to the SOX family. SOX proteins are critical regulators of multiple cancer progression, and some are known to control carcinogenesis. Nevertheless, the functional and clinical significance of SOX13 in human thyroid cancer (THCA) remain largely unelucidated.

View Article and Find Full Text PDF

PTEN inhibits epithelial mesenchymal transition of thyroid cancer cells by regulating the Wnt/β-Catenin signaling pathway.

Discov Oncol

December 2024

Department of Ultrasound, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, 443000, Hubei, China.

Objective: The global incidence of thyroid cancer (THCA) has significantly risen in recent years. This study aims to investigate the role and mechanisms of PTEN in epithelial mesenchymal transition (EMT), invasion and migration of THCA cells.

Methods: PTEN expression in THCA was analyzed through bioinformatics databases.

View Article and Find Full Text PDF

MARCH5 is a key regulatory factor in mitochondria. However, the expression and function of MARCH5 in thyroid cancer (TC) are not yet clear. The research explores the role and the potential mechanism of MARCH5 in the tumorigenesis of TC.

View Article and Find Full Text PDF

In this work, thirty 2,4-diarylaminopyrimidine-based hydrazones were designed, synthesised, and their anti-thyroid cancer activity were explored. The majority of compounds exhibit moderate to excellent cytotoxic activity against FAK overexpressing TPC-1 cells, with IC values ranging from 0.113 to 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!