The lepidopteran-specific, insecticidal crystal proteins of Bacillus thuringiensis vary in toxicity to different species of lepidopteran larvae. We report studies of CryIA(a) and CryIA(c), two related proteins that have different degrees of toxicity to Heliothis virescens yet very similar degrees of toxicity to Manduca sexta. The amino acid differences between these proteins are located primarily between residues 280 and 722. We have constructed a series of chimeric proteins and determined their toxicities to both insects. The most significant findings arise from the replacement of three segments of the cryIA(c) gene with homologous portions of the cryIA(a) gene: codons 332-428, 429-447, and 448-722. Each of these segments contributed substantially and largely additively toward efficacy for H. virescens. However, replacement of the 429-447 segment of cryIA(c) gene with the cryIA(a) sequence resulted in a 27-50-fold reduction in toxicity toward M. sexta whereas the reduction in toxicity to H. virescens was only 3-4-fold. Subdivision of the 429-447 segment and replacements involving residues within this segment reduced toxicity to M. sexta by 5- to more than 2000-fold whereas toxicity to H. virescens was only reduced 3-10-fold. These observations indicate that: 1) different but overlapping regions of the cryIA(c) gene determine specificity to each of the two test insects; 2) some of the examined gene segments interact in determining specificity; and 3) different sequences in the cryIA(a) and cryIA(c) genes are required for maximal toxicity to M. sexta.

Download full-text PDF

Source

Publication Analysis

Top Keywords

cryiac gene
12
toxicity sexta
12
lepidopteran-specific insecticidal
8
bacillus thuringiensis
8
toxicity
8
cryiaa cryiac
8
degrees toxicity
8
429-447 segment
8
reduction toxicity
8
toxicity virescens
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!