A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Calcium-mediated cell death during myocardial reperfusion. | LitMetric

Reperfusion may induce additional cell death in patients with acute myocardial infarction receiving primary angioplasty or thrombolysis. Altered intracellular Ca(2+) handling was initially considered an essential mechanism of reperfusion-induced cardiomyocyte death. However, more recent studies have demonstrated the importance of Ca(2+)-independent mechanisms that converge on mitochondrial permeability transition (MPT) and are shared by cardiomyocytes and other cell types. This article analyses the importance of Ca(2+)-dependent cell death in light of these new observations. Altered Ca(2+) handling includes increased cytosolic Ca(2+) levels, leading to activation of calpain-mediated proteolysis and sarcoplasmic reticulum-driven oscillations; this can induce hypercontracture, but also MPT due to the privileged Ca(2+) transfer between sarcoplasmic reticulum and mitochondria through cytosolic Ca(2+) microdomains. In the opposite direction, permeability transition can worsen altered Ca(2+) handling and favour hypercontracture. Ca(2+) appears to play an important role in cell death during the initial minutes of reperfusion, particularly after brief periods of ischaemia. Developing effective and safe treatments to prevent Ca(2+)-mediated cardiomyocyte death in patients with transient ischaemia, by targeting Ca(2+) influx, intracellular Ca(2+) handling, or Ca(2+)-induced cell death effectors, is an unmet challenge with important therapeutic implications and large potential clinical impact.

Download full-text PDF

Source
http://dx.doi.org/10.1093/cvr/cvs116DOI Listing

Publication Analysis

Top Keywords

cell death
20
ca2+ handling
16
ca2+
9
death patients
8
intracellular ca2+
8
cardiomyocyte death
8
permeability transition
8
altered ca2+
8
cytosolic ca2+
8
death
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!