A fast algorithm for nonparametric probability density estimation.

IEEE Trans Pattern Anal Mach Intell

Centre d'Automatique, University of Lille 1, 59655 Villeneuve d'Ascq Cedex, France; Faculty of Sciences, University Mohamed V, B. P. 1014, Rabat, Morocco.

Published: June 1982

A fast algorithm for the well-known Parzen window method to estimate density functions from the samples is described. The computational efforts required by the conventional and straightforward implementation of this estimation procedure limit its practical application to data of low dimensionality. The proposed algorithm makes the computation of the same density estimates with a substantial reduction of computer time possible, especially for data of high dimensionality. Some simulation experiments are presented which demonstrate the efficiency of the method. They indicate the computational savings that may be achieved through the use of this fast algorithm for artificially generated sets of data.

Download full-text PDF

Source
http://dx.doi.org/10.1109/tpami.1982.4767322DOI Listing

Publication Analysis

Top Keywords

fast algorithm
12
algorithm nonparametric
4
nonparametric probability
4
probability density
4
density estimation
4
estimation fast
4
algorithm well-known
4
well-known parzen
4
parzen window
4
window method
4

Similar Publications

The laser-induced fluorescence technique has the advantage of fast and non-destructive detection and can be used to classify types of marine microplastics. However, spectral overlap poses a challenge for qualitative and quantitative analysis by conventional fluorescence spectroscopy. In this paper, a 405 nm excitation laser source was used to irradiate 4 types of microplastic samples with different concentrations, and a total of 1600 sets of fluorescence spectral data were obtained.

View Article and Find Full Text PDF

Improving Industrial Quality Control: A Transfer Learning Approach to Surface Defect Detection.

Sensors (Basel)

January 2025

Centre of Mechanical Technology and Automation (TEMA), Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal.

To automate the quality control of painted surfaces of heating devices, an automatic defect detection and classification system was developed by combining deflectometry and bright light-based illumination on the image acquisition, deep learning models for the classification of non-defective (OK) and defective (NOK) surfaces that fused dual-modal information at the decision level, and an online network for information dispatching and visualization. Three decision-making algorithms were tested for implementation: a new model built and trained from scratch and transfer learning of pre-trained networks (ResNet-50 and Inception V3). The results revealed that the two illumination modes employed widened the type of defects that could be identified with this system, while maintaining its lower computational complexity by performing multi-modal fusion at the decision level.

View Article and Find Full Text PDF

This paper presents an approach for event recognition in sequential images using human body part features and their surrounding context. Key body points were approximated to track and monitor their presence in complex scenarios. Various feature descriptors, including MSER (Maximally Stable Extremal Regions), SURF (Speeded-Up Robust Features), distance transform, and DOF (Degrees of Freedom), were applied to skeleton points, while BRIEF (Binary Robust Independent Elementary Features), HOG (Histogram of Oriented Gradients), FAST (Features from Accelerated Segment Test), and Optical Flow were used on silhouettes or full-body points to capture both geometric and motion-based features.

View Article and Find Full Text PDF

To improve the performance of Radio Frequency Identification (RFID) multi-label systems, the multi-label network structure needs to be quickly located and optimized. A multi-label location measurement method based on the NLM-Harris algorithm is proposed in this paper. Firstly, multi-label geometric distribution images are obtained through a label image acquisition system of a multi-label semi-physical simulation platform with two vertical Charge-Coupled Device (CCD) cameras, and Gaussian noise is added to the image to simulate thermoelectric interference.

View Article and Find Full Text PDF

Aiming at the problems of a six-degree-of-freedom robotic arm in a three-dimensional multi-obstacle space, such as low sampling efficiency and path search failure, an improved fast extended random tree (RRT*) algorithm for robotic arm path planning method (abbreviated as HP-APF-RRT*) is proposed. The algorithm generates multiple candidate points per iteration, selecting a sampling point probabilistically based on heuristic values, thereby optimizing sampling efficiency and reducing unnecessary nodes. To mitigate increased search times in obstacle-dense areas, an artificial potential field (APF) approach is integrated, establishing gravitational and repulsive fields to guide sampling points around obstacles toward the target.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!