Rationale: A method has been developed for the quantitation of isotopic labeling of proteins using liquid chromatography/tandem mass spectrometry (LC/MS/MS) for the application of protein nuclear magnetic resonance (NMR) studies. NMR relies on specific isotopic nuclei, such as (13)C and (15)N, for detection and, therefore, isotopic labeling is an important sample preparation step prior to in-depth structural characterization of proteins. The goal of this study was to develop a robust quantitative assay for assessing isotopic labeling in proteins while retaining information on the extent of labeling for individual amino acids.

Methods: Complete digestion of proteins by acid hydrolysis was followed by derivatization of free amino acids with 6-aminoquinolyl N-hydroxysuccinimidyl carbamate (AQC) forming derivatives having identical MS/MS fragmentation behavior. Precursor ion scanning on a hybrid quadrupole-linear ion trap platform was used for amino acid analysis and determining isotopic labeling of proteins.

Results: Using a set of isotope-labeled amino acid standards mixed with their unlabeled counterparts, the method was validated for accurately measuring % isotopic contribution. We then applied the method for determining the (13)C isotopic content of algal proteins during a feeding study using (13)C(6)-glucose- or (13)C-bicarbonate-supplemented culture media as well as the level of labeling in mussel byssal threads obtained after feeding with labeled algae.

Conclusions: This method is ideally suited for assessing the extent of protein labeling prior to NMR studies, where the isotopic labeling is a determining factor in the quality of resulting protein spectra, and can be applied to a multitude of different biological samples.

Download full-text PDF

Source
http://dx.doi.org/10.1002/rcm.6204DOI Listing

Publication Analysis

Top Keywords

isotopic labeling
24
labeling proteins
12
labeling
9
precursor ion
8
ion scanning
8
liquid chromatography/tandem
8
chromatography/tandem mass
8
mass spectrometry
8
amino acids
8
nuclear magnetic
8

Similar Publications

Crystalline γ-FeO(OH) dominantly possessing ─OH terminals (𝛾-FeO(OH)), polycrystalline γ-FeO(OH) containing multiple ─O, ─OH, and Fe terminals (𝛾-FeO(OH)), and α-FeO majorly containing ─O surface terminals are used as electrocatalysts to study the effect of surface terminals on electrocatalytic nitrate reduction reaction (eNORR) selectivity and stabilization of reaction intermediates. Brunauer-Emmett-Teller analysis and electrochemically determined surface area suggest a high active surface area of 117.79 m g (ECSA: 0.

View Article and Find Full Text PDF

Investigating Complexin-Membrane Interactions Using NMR and Optical Methods.

Methods Mol Biol

January 2025

Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA.

Complexins are a family of small presynaptic proteins that regulate neurotransmitter release at nerve terminals and are highly conserved in evolution. While direct interactions with SNARE proteins are critical for all complexin functions, binding of their disordered C-terminal domains (CTD) to membranes, especially to synaptic vesicle membranes, is essential for the ability of complexin to inhibit vesicle release. Furthermore, while some complexin CTDs possess an endogenous affinity for membranes, other complexin isoforms are subject to lipidation at their C-termini, which is presumed to confer additional membrane binding.

View Article and Find Full Text PDF

Roles of acyl carrier proteins in ladderane fatty acid producing-organisms.

Biochim Biophys Acta Gen Subj

January 2025

Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, D-69120 Heidelberg, Germany. Electronic address:

Ladderanes are highly strained hydrocarbons consisting of two or more linearly concatenated cyclobutane rings. Strikingly, ladderane moieties are part of unique fatty acids and fatty alcohols that are exclusively found in the membrane lipids of anaerobic ammonium-oxidizing (anammox) bacteria. These bacteria express a distinctive gene cluster (cluster I) that has been suggested to be responsible for ladderane fatty acid (FA) biosynthesis in addition to a cluster likely involved in canonical FA biosynthesis (cluster III).

View Article and Find Full Text PDF

Selective Hydrogen Isotope Exchange Catalysed by Simple Alkali-Metal Bases in DMSO.

Angew Chem Int Ed Engl

January 2025

Universitat Bern, Department of Chemistry and Biochemistry, Freiestrasse 3, 3012, Bern, SWITZERLAND.

Isotope Exchange processes are becoming the preferred way to prepare isotopically labelled molecules, avoiding the redesign of multistep synthetic protocols. In the case of deuterium incorporation, the most used strategy has employed transition metals, that offer high reactivity under mild reaction conditions. Despite their success, the trade-off is that these metals are precious, and often exhibit high toxicity.

View Article and Find Full Text PDF

Characterization of 53 Multiplexed Targeted Proteomics Assays for Verification Studies in Cancer Cell Lines.

J Proteome Res

January 2025

Segal Cancer Proteomics Centre, Lady Davis Institute for Medical Research, Jewish General Hospital and McGill University, Montreal, Quebec H3T 1E2, Canada.

The National Cancer Institute's Clinical Proteomics Tumor Analysis Consortium (CPTAC) was established to address the need for improved design, standardization, and validation of proteomics assays to enable better translation of biomarkers from the analytical lab to the clinic. Here, we applied CPTAC guidelines to characterize quantitative mass spectrometry (MS) assays in a new multiple reaction monitoring (MRM) proteomics panel. The panel of 50 proteins was developed in response to a previous study that identified a proteomic profile of altered translational control associated with response to a new cancer drug.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!