The balance between actions of procoagulant and anticoagulant factors protects organisms from bleeding and thrombosis. Thus, antithrombin deficiency increases the risk of thrombosis, and complete quantitative deficiency results in intrauterine lethality. However, patients homozygous for L99F or R47C antithrombin mutations are viable. These mutations do not modify the folding or secretion of the protein, but abolish the glycosaminoglycan-induced activation of antithrombin by affecting the heparin-binding domain. We speculated that the natural β-glycoform of antithrombin might compensate for the effect of heparin-binding mutations. We purified α- and β-antithrombin glycoforms from plasma of 2 homozygous L99F patients. Heparin affinity chromatography and intrinsic fluorescence kinetic analyses demonstrated that the reduced heparin affinity of the α-L99F glycoform (K(D), 107.9 ± 3nM) was restored in the β-L99F glycoform (K(D), 53.9 ± 5nM) to values close to the activity of α-wild type (K(D), 43.9 ± 0.4nM). Accordingly, the β-L99F glycoform was fully activated by heparin. Similar results were observed for recombinant R47C and P41L, other heparin-binding antithrombin mutants. In conclusion, we identified a new type of mosaicism associated with mutations causing heparin-binding defects in antithrombin. The presence of a fully functional β-glycoform together with the activity retained by these variants helps to explain the viability of homozygous and the milder thrombotic risk of heterozygous patients with these specific antithrombin mutations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1182/blood-2012-01-406207 | DOI Listing |
Thromb Res
January 2025
Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, Fujian, China. Electronic address:
Background: Protein S deficiency is a rare inherited disease. We report the case of a young man who unexpectedly developed isolated cortical vein thrombosis (ICoVT) associated with a novel PROS1 mutation.
Methods: Clinical symptoms were recorded, and physical examinations conducted.
Orphanet J Rare Dis
December 2024
Thrombosis Research Center, Beijing Jishuitan Hospital, Capital Medical University, Xicheng District, Beijing, 100035, China.
Background: Identification of mutations in the SERPINC1 has illuminated the intricate pathways underlying antithrombin (AT) deficiency. Our group identified a variation in the SERPINC1 gene (c.964 A > T, p.
View Article and Find Full Text PDFBeijing Da Xue Xue Bao Yi Xue Ban
December 2024
Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing 100191, China.
Hereditary protein S deficiency (PSD) is an autosomal dominant disorder caused by mutations in the 1 gene which can cause venous thrombosis. Individuals with PSD usually present with recurrent deep vein thrombosis and/or pulmonary embolism, but thrombosis may occur at unusual sites, such as the mesenteric and portal veins. Here we report a case of hereditary protein S deficiency patient with predominant mesenteric venous thrombosis.
View Article and Find Full Text PDFBlood Adv
December 2024
University of Michigan, Ann Arbor, Michigan, United States.
Venous thrombosis is a leading cause of morbidity/mortality and associated with deficiencies of the anticoagulant protein C (PC, PROC) and its cofactor, protein S (PS, PROS1). Heterozygous mutations increase the risk of adult-onset thrombosis, while homozygous mutations result in pre/neonatal lethal thrombosis. PC- and PS-deficient patient phenotypes are generally considered clinically indistinguishable.
View Article and Find Full Text PDFThromb J
December 2024
Hemophilia Care and Research Center, Tri-Service General Hospital, Taipei, Taiwan.
Background: Antithrombin (AT) is a serine protease inhibitor which exerts its anticoagulant effect through binding to serine residues in the active centers of procoagulant serine proteases. Its deficiency is associated with increased risk of venous thrombosis. We aim to investigate the pathogenic mechanism of two natural mutants (W221C and M284R) in inherited AT deficiency.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!