We examined the behavioural and electrophysiological responses of taiga ticks (Ixodes persulcatus) to several olfactory stimuli: Osmopherone® (5-a-androst-16-en-3-ol), Osmopherine® (butanoic and 3-methylbutanoic acids), DEET® (N,N-diethyl-meta-toluamide), ethanol (96%), and water (control stimulus). To study individual tick behavioural reactions to these stimuli, we used a Y-shaped glass maze (n=50). To study the electrophysiological reactions of the ticks' synganglia to these olfactory stimuli, we recorded the shifts of total potential (TP) of pre-oesophageal neurons in response to odour stimulation of Haller's organ (n=25). We found that Osmopherine® attracted ticks and frequently evoked negative shifts of TP, whereas the response to Osmopherone® did not differ from the reaction to water. DEET® and ethanol acted as tick repellents and generally evoked positive shifts of TP. We also tested each tick for its questing height (QH) on a glass rod that was at an incline of 75°, and we tested for the presence of pathogens i.e., DNA of Borrelia burgdorferi sp. s.l. and RNA of tick-borne encephalitis virus (TBEV). The degree of response to Osmopherine® positively correlated with the QH. The ticks with the highest values of QH showed a greater prevalence of the tick-borne pathogen Borrelia sp. s.l. compared with the ticks that did not reach the maximum QH. The present results show a correlation between the electrophysiological reaction of the synganglia of ticks and their behavioural responses to different odours.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jinsphys.2012.04.004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!