The properties of magnetic nanoparticles tend to be depressed by the unavoidable presence of a magnetically inactive surface layer. However, outstanding magnetic properties with a room-temperature magnetization near the bulk value can be produced by high-temperature synthesis methods involving capping with organic acid. The capping molecules are not magnetic, so the origin of the enhanced magnetization remains elusive. In this work, we present a real-space characterization on the subnanometer scale of the magnetic, chemical, and structural properties of iron-oxide nanoparticles via aberration-corrected scanning transmission electron microscopy. For the first time, electron magnetic chiral dichroism is used to map the magnetization of nanoparticles in real space with subnanometer spatial resolution. We find that the surface of the nanoparticles is magnetically ordered. Combining the results with density functional calculations, we establish how magnetization is restored in the surface layer. The bonding with the acid's O atoms results in O-Fe atomic configuration and distances close to bulk values. We conclude that the nature and number of molecules in the capping layer is an essential ingredient in the fabrication of nanoparticles with optimal magnetic properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/nl300665z | DOI Listing |
Nat Commun
January 2025
Université de Lorraine, CNRS, Inria, LORIA, F-54000, Nancy, France.
The main obstacle to large scale quantum computing are the errors present in every physical qubit realization. Correcting these errors requires a large number of additional qubits. Two main avenues to reduce this overhead are (i) low-density parity check (LDPC) codes requiring very few additional qubits to correct errors (ii) cat qubits where bit-flip errors are exponentially suppressed by design.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Chemistry and Materials Science, Hubei Engineering University, Xiaogan 43200, China.
Passive Radiant Cooling and Heating are green and sustainable methods of radiant heat management without consuming additional energy. However, the absorption of sunlight and poor insulation of materials can reduce radiative cooling and also affect radiative heating performance. Herein, we have constructed porous hierarchical dual-mode silk nanofibrous aerogel (SNF) films with high mechanical toughness and stability using silk nanofibers/GO.
View Article and Find Full Text PDFMod Pathol
January 2025
Department of Pathology and Laboratory Medicine, University of Miami.
Human papillomavirus (HPV) underpins approximately 90% of squamous cell carcinomas (SCC) of the anus and perianal region. These tumors usually arise in association with precursor lesions such anal intraepithelial neoplasia/ high-grade squamous intraepithelial lesion (AIN 3/ HSIL), whereas a small subset of HPV-negative cancers may harbor mutations in TP53. Recently, vulvar lesions termed differentiated exophytic vulvar intraepithelial lesion/vulvar acanthosis with altered differentiated (DEVIL/VAAD) have been recognized as HPV-independent, TP53 wild-type precursors for vulvar carcinoma; however, analogous anal lesions have not been described.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
School of Chemistry, Dalian University of Technology, Dalian 116024 PR China. Electronic address:
The development of electrode materials for aqueous ammonium-ion supercapacitors (NH-SCs) has garnered significant attention in recent years. Poor intrinsic conductivity, sluggish electron transfer and ion diffusion kinetics, as well as structural degradation of vanadium oxides during the electrochemical process, pose significant challenges for their efficient ammonium-ion storage. In this work, to address the above issues, the core-shell VO·nHO@poly(3,4-ethylenedioxithiophene) composite (denoted as VOH@PEDOT) is designed and prepared by a simple agitation method to boost the ammonium-ion storage of VO·nHO (VOH).
View Article and Find Full Text PDFAdv Colloid Interface Sci
January 2025
Breakthrough Technologies, Deakin, ACT, Australia.
The glycocalyx and its associated endothelial surface layer which lines all cell membranes and most tissues, dwarfs the phospholipid membrane of cells in extent. Its major components are sulphated polymers like heparan and chondroitin sulphates and hyaluronic acid. These form a fuzzy layer of unknown structure and function.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!