AI Article Synopsis

  • Aflatoxin contamination from fungi is a significant global health issue, making the need for mycotoxin-free feed crucial in agriculture and animal production.
  • The use of lactic acid bacteria, specifically Lactobacillus rhamnosus L60 and Lactobacillus fermentum L23, has emerged as a promising natural method to prevent food spoilage and reduce the reliance on chemical preservatives due to their antimicrobial properties.
  • Research shows that both Lactobacillus strains effectively inhibit the growth of aflatoxin-producing fungi, significantly reducing aflatoxin B(1) levels, which suggests their potential role in improving the safety of animal feed.

Article Abstract

Aflatoxin (highly toxic and carcinogenic secondary metabolites produced by fungi) contamination is a serious problem worldwide. Modern agriculture and animal production systems need to use high-quality and mycotoxin-free feedstuffs. The use of microorganisms to preserve food has gained importance in recent years due to the demand for reduced use of chemical preservatives by consumers. Lactic acid bacteria are known to produce various antimicrobial compounds that are considered to be important in the biopreservation of food and feed. Lactobacillus rhamnosus L60 and Lactobacillus fermentum L23 are producers of secondary metabolites, such as organic acids, bacteriocins and, in the case of L60, hydrogen peroxide. The antifungal activity of lactobacilli strains was determined by coculture with Aspergillus section Flavi strains by two qualitative and one quantitative methods. Both L23 and L60 completely inhibited the fungal growth of all aflatoxicogenic strains assayed. Aflatoxin B (1) production was reduced 95.7-99.8% with L60 and 27.5-100% with L23. Statistical analysis of the data revealed the influence of L60 and L23 on growth parameters and aflatoxin B (1) production. These results are important given that these aflatoxicogenic fungi are natural contaminants of feed used for animal production, and could be effectively controlled by Lactobacillus L60 and L23 strains with probiotic properties.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1574-6968.2012.02570.xDOI Listing

Publication Analysis

Top Keywords

antifungal activity
8
probiotic properties
8
secondary metabolites
8
animal production
8
aflatoxin production
8
l60 l23
8
l60
6
strains
5
l23
5
lactobacillus
4

Similar Publications

Cold atmospheric plasma (CAP) has emerged as a promising technology for neutralizing microbes, including multidrug-resistant strains. This study investigates CAP's potential as an alternative to traditional antimicrobial drugs for microbial inactivation. In the era of increasing antimicrobial resistance, there is a persistent need for alternative antimicrobial strategies.

View Article and Find Full Text PDF

An unusual clathrate-type meroterpenoid isoatlantinone A (1), two new steroids acrocalysterols E (2) and F (3), together with fifteen known compounds (4-18) were separated from a plant-associated fungus Penicillium fellutanum. Their structures and absolute configurations were established based on spectroscopic data (NMR and HRESIMS), electronic circular dichroism (ECD) and modified Mosher's method. Notably, compound 1 represents an unusual highly oxygenated meroterpenoid derivative with a unique caged bioxatetracyclo-[6.

View Article and Find Full Text PDF

Antifungal activity of 2-adamantylamine hydrochloride on and .

J Med Microbiol

January 2025

Department of Stem Cell and Regenerative Medicine, Medical Biotechnology, Centre for Interdisciplinary Research, D.Y. Patil Education Society (Deemed to be University), Kolhapur- 416-003, Maharashtra, India.

Increased virulence and drug resistance in species of resulted in reduced disease control and further demand the development of potent antifungal drugs. The repurposing of non-antifungal drugs and combination therapy has become an attractive alternative to counter the emerging drug resistance and toxicity of existing antifungal drugs against and non-albicans species. This study aimed to accelerate antifungal drug development process by drug repurposing approach.

View Article and Find Full Text PDF

The enantiospecific anti-phytopathogenic fungal activity of a new type of coumarin bearing a phenylpropanoid unit at the 3-position was found. ()-3-[1-Methoxy-3-(4-methoxyphenyl)prop-2-yl]coumarin (()-: EC=16.5 µM) was 30 times more effective than the ()-form against the Japanese pear pathotype.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!