The effects of sustained cognitive task performance on subsequent resting state functional connectivity in healthy young and middle-aged male schoolteachers.

Brain Connect

Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands.

Published: September 2012

Previous studies showed that functional connectivity (FC) within resting state (RS) networks is modulated by previous experience. In this study the effects of sustained cognitive performance on subsequent RS FC were investigated in healthy young (25-30 years; n=15) and middle-aged (50-60 years; n=14) male schoolteachers. Participants were scanned (functional magnetic resonance imaging [MRI]) after a cognitively demanding and a control intervention (randomized tester-blind within-subject design). Independent component analysis (ICA) was used to decompose the data into spatially independent networks. This study focused on the executive control (ExN), the left and right frontoparietal (FPN), and the default mode network (DMN). The effects of cognitive performance and age were calculated with a full-factorial analysis of variance (ANOVA). A main effect of age was found in the left inferior frontal gyrus for the ExN and in the middle frontal gyrus for the DMN with middle-aged teachers having reduced RS FC. Sustained cognitive performance increased subsequent RS FC between the ExN and a lingual/parahippocampal cluster, and between the left FPN and a right calcarine/precuneus cluster. In these clusters, FC strength correlated positively with the perceived amount of effort during the intervention. Further, sustained cognitive performance affected subsequent RS FC between the ExN and the right temporal superior gyrus differently in young and middle-aged men. The results suggest that effects of age on RS FC are already present at middle age. Sustained cognitive performance increased RS FC between task-positive networks and other brain regions, although a change in RS FC within the networks was not found.

Download full-text PDF

Source
http://dx.doi.org/10.1089/brain.2011.0060DOI Listing

Publication Analysis

Top Keywords

sustained cognitive
20
cognitive performance
20
performance subsequent
12
effects sustained
8
resting state
8
functional connectivity
8
healthy young
8
young middle-aged
8
male schoolteachers
8
frontal gyrus
8

Similar Publications

Does music counteract mental fatigue? A systematic review.

PLoS One

January 2025

Department of Sport Studies, Faculty of Education Studies, Universiti Putra Malaysia, Selangor, Malaysia.

Introduction: Mental fatigue, a psychobiological state induced by prolonged and sustained cognitive tasks, impairs both cognitive and physical performance. Several studies have investigated strategies to counteract mental fatigue. However, potential health risks and contextual restrictions often limit these strategies, which hinder their practical application.

View Article and Find Full Text PDF

Background: Cellular senescence is a hallmark of aging and has been implicated in several neurodegenerative diseases including Alzheimer's disease (AD). Senescence cells undergo changes in gene expression and metabolism and can exhibit a so-called "senescence-associated secretory phenotype" (SASP) characterized by increased secretion of pro-inflammatory molecules and factors which can damage nearby cells, contributing to AD pathology progression.

Method: In this study, we determined mechanisms of cellular senescence using human postmortem brain samples, cellular models, and APOE4 animal models.

View Article and Find Full Text PDF

Background: The bi-directional autophagy and inflammation network becomes progressively dysregulated with age, with systemic inflammation as a biomarker of this dysregulation including in Alzheimer's Disease (AD). We hypothesize that interventions which target the shared feature of systemic inflammation in the biology of aging and AD, via regulation of the autophagy-inflammation network, will prevent the conversion to disease pathogenesis in AD as well as improve healthspan and longevity in aging populations. While previous studies report benefits of mTOR inhibition including rapamycin in transgenic mouse models of familial AD, the present studies aim to evaluate this pathway in a model of sporadic, late onset AD (LOAD) and test the contribution of AMP-activated protein kinase (AMPK) as a critical regulator of the mTOR pathway.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Department of Pediatrics, Division of Infectious Diseases and Immunology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.

Background: Alzheimer's disease (AD) is a progressive irreversible dementia characterized by beta-amyloid protein plaque deposition and hyperphosphorylation of tau forming neurofibrillary tangles, and neurodegeneration. An emerging theory posits that infections could be one of the triggering factors in AD development and progression. Multiple lines of evidence have linked Chlamydia pneumoniae (Cp), a gram-negative obligate intracellular bacterium with AD.

View Article and Find Full Text PDF

Background: The failure of amyloid plaque-reducing drugs to reverse cognitive decline in Alzheimer's disease (AD) has suggested that treatments might be more effective in early or prodromal stages of the disease. However, the progression of synaptic and circuit changes associated with Aβ overexpression, particularly at very early ages, have not been well-characterized. Indeed, evidence from both human and animal studies indicates that brain structure and function might be altered months to years before plaques can be detected.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!