Polyvinyl alcohol (PVA), polyethylene (PE) and ethylene-vinyl acetate copolymer (EVA) film was prepared. The optic capability, infrared transmittance and heat preservation capability of the films were studied respectively. The result indicated that the haze degree of the PVA film decreased about 15% and 12% than PE film and EVA film; PVA film transmittance of IR was more or less than other films in the 7-14 microm wavelength range so that the temperature of greenhouse could be increased effectively in daylight. It was just 16.2% about 20% less than EVA film, and 50% less than PE film. The PVA film could be used as agricultural film in greenhouse to promote heat preservation performance greatly.
Download full-text PDF |
Source |
---|
ACS Omega
December 2024
Department of Environmental Studies, Kannur University, Mangattuparamba Campus, Kannur, Kerala 670567, India.
A poly(vinyl alcohol)/montmorillonite/titania (PVA/MMT/TiO) nanocomposite film was fabricated via a simple solution casting strategy for the removal of cationic as well as anionic dyes. The developed nanocomposite film was subjected to X-ray diffraction (XRD), Fourier transform Infrared (FTIR), thermogravimetric analysis, dynamic mechanical analysis (DMA), mechanical property evaluation, and scanning electron microscopy (SEM) analysis. The embedding of MMT and TiO nanoparticles onto a PVA matrix has been confirmed from XRD, FTIR, and SEM analysis.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang, Malaysia.
The polyvinyl alcohol/chitosan (PVA/CS) thin film membrane was modified using a deep eutectic solvent (DES) to enhance its adsorption capability and mechanical strength for the removal of brilliant green (BG) dye. Batch adsorption experiments, machine learning (ML) modeling, and density functional theory (DFT) analyses were performed to evaluate the adsorption of BG using PVA/CS and DES-modified PVA/CS (DES/PVA/CS) membranes. Incorporating DES (5 wt%) into the PVA/CS membrane increased its elongation at break from 8.
View Article and Find Full Text PDFSci Rep
January 2025
Physics Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
An electro- and optically favorable quaternary nanocomposite film was produced by solution-casting nickel oxide nanoparticles (NiO NPs) into polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP), and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT/PSS). Based on transmission electron microscopy (TEM) and X-ray diffraction (XRD) observations, the synthesized NiO NPs have a cubic phase and a diameter between 10 and 45 nm. The complexity and interactions observed through XRD patterns, UV-visible spectra, and FTIR measurements suggest that the NPs are not just dispersed within the polymer matrix, but are interacting with it, leading to enhanced dielectric properties and AC electrical conductivity.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
State Key Laboratory of Tea Plant Biology and Utilization, Joint Research Center for Food Nutrition and Health of IHM and Anhui Provincial Key Laboratory of Food Safety Monitoring and Quality Control, Anhui Agricultural University, Hefei 230036, PR China; College of Food and Nutrition, Anhui Agricultural University, Hefei 230036, PR China. Electronic address:
To mitigate the risk associated with water-soluble fluoride in tea and to have less influence on the contents of tea infusion, a highly selective lanthanum modified silk fibroin (SF) and polyvinyl alcohol (PVA) composite film (SF/PVA-La) was prepared to remove fluoride from brick tea infusion. Notably, SF/PVA-La could remove about 48 % of the fluoride from in brick tea infusion within 30 min. Importantly, the reduction in total tea polyphenols in brick tea did not exceed 10 %, and the reduction in caffeine was only 0.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Food Hygiene, Science and Research Branch, Islamic Azad University, Tehran, Iran.
Smart packaging, also known as intelligent packaging, is responsive to external stimuli, moisture, light, oxygen, heat, pH, and bacterial growth. In this study, polyvinyl alcohol/nanochitosan/phycocyanin nanocomposite (PVA/NCH/PC-NC) for fish fillets of Oncorhynchus mykiss rainbow trout coating was prepared. Five treatments were prepared over a period of 14 days (0, 1, 7 and 14 days) under treatments of T: fish coated with PVA/NCH-NC without PC; T, T T and T fish coated with PVA/NCH/PC-NC (0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!