Organic light-emitting devices (OLEDs) with emission peak at 520 nm were designed. The electroluminescence (EL) spectra including the integrated intensity, the peak width at half height, and the intensity and the position of the peak of the EL spectra of the OLEDs and microcavity OLEDs (MOLEDs), the total thickness of organic layers which is changeable, were calculated and theoretically analyzed with the thickness of the layer of NPB and light-emitting layer of Alq3 ranging from 10 to 100 nm, respectively. According to these studies, it was found that the optimized OLEDs should be constructed with 70 nm NPB and 62 nm Alq3, and this structure should be more suitable to configurate the MOLEDs. These results suggest that the suitable structure of OLEDs/MOLEDs could be designed with help of theoretical calculation, which is also helpful to the light-emitting properties of OLEDs and MOLEDs.
Download full-text PDF |
Source |
---|
Chem Sci
January 2025
Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology Guangzhou 510640 China
The efficient harvesting of triplet excitons is key to realizing high efficiency blue fluorescent organic light-emitting diodes (OLEDs). Triplet-triplet annihilation (TTA) up-conversion is one of the effective triplet-harvesting strategies. However, during the TTA up-conversion process, a high current density is necessary due to the competitive non-radiative triplet losses.
View Article and Find Full Text PDFRSC Adv
January 2025
Programa de Pós-Graduação em Ciência e Engenharia de Materiais, Universidade Federal Rural do Semi-Árido (UFERSA) CEP 59625-900 Mossoró RN Brazil
Chalcones demonstrate significant absorption in the near ultraviolet-visible spectrum, making them valuable for applications such as solar cells, light-emitting diodes, and nonlinear optics. This study investigates four dibenzalacetone derivatives (DBAd), DBA, DBC, DEP, and DMA, examining the impact of electron-donating and electron-withdrawing groups and conjugation elongation on their electronic structure in solvents of varying polarities. Using the Polarizable Continuum Model (PCM) and time-dependent density functional theory (TD-DFT), we characterized the excited states of these compounds.
View Article and Find Full Text PDFACS Omega
January 2025
Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan.
Carbon dots (CDs) derived from natural products have attracted considerable interest as eco-friendly materials with a wide range of applications, such as bioimaging, sensors, catalysis, and solar energy harvesting. Among these applications, electroluminescence (EL) is particularly desirable for light-emitting devices in display and lighting technologies. Typically, EL devices incorporating CDs feature a layered structure, where CDs function as the central emissive layer, flanked by charge transport layers and electrodes.
View Article and Find Full Text PDFNano Lett
January 2025
Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Daxue Road 75, Zhengzhou 450052, China.
Ternary copper halides with an eco-friendly property have emerged as attractive candidates to replace toxic lead-containing perovskites for light-emitting diodes (LEDs), yet achieving long-wavelength electroluminescence remains unexplored. Herein, we report the first realization of orange-emitting LEDs (595 nm) based on nontoxic organic-inorganic PEACuI (PEA = β-phenylethylamine) films enabled by a nonionic surfactant poly(propylene glycol) bis(2-aminopropyl ether) (APPG) chemisorption. Experimental and theoretical analyses rationalize that the APPG additive has strong chemisorption with the Cu-I framework within the grain boundaries of PEACuI films, which not only improves the film's morphology but also passivates the iodine vacancy defects.
View Article and Find Full Text PDFSmall Methods
January 2025
Department of Chemical and Biomolecular Engineering, Institute of Emergent Materials, Sogang University, Seoul, 04107, Republic of Korea.
A crucial step in fabricating full-color organic light-emitting diode (OLED) displays is patterning the emissive layer (EML). Traditional methods utilize thermal evaporation through metal masks. However, this limits the achievable resolution required for emerging microdisplay technologies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!