The synthesis of asymmetric meso-aryl-substituted porphyrins containing three 4-methoxycarbonylphenyl groups, and as a forth substituent 4-hydroxyphenyl or 4-hydroxy-3- methoxyphenyl radicals, or the isomeric 3- and 4-pyridyl substituents is described. O-alkyl derivatives of 4-hydroxyl residue are obtained. The ytterbium complexes ofthese porphyrins were synthesized and studied their luminescence spectral properties were studied. A significant difference in the lifetimes of the excited state ofytterbium complexes of esters and acids of asymmetric porphyrins is demonstrated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1134/s1068162011060136 | DOI Listing |
Chemistry
January 2025
University of Padova: Universita degli Studi di Padova, Dipartimento di Scienze Chimiche, Via Marzolo 1, 35131, Padova, ITALY.
Chalcogenide exchange reactions are an important class of bimolecular nucleophilic substitution reactions (SN2) involving sulfur and selenium species as nucleophile, central atom, and/or leaving group, which are fundamental throughout redox biology and metabolism. While thiol-disulfide exchange reactions have been deeply investigated, those involving selenium are less understood, especially with regards to the polarised selenenyl sulfides RSe-SR' even though the directed reactivity of selenenyl sulfides is biologically crucial for selenoenzymes such as thioredoxin reductase (TrxR) and glutathione peroxidase (GPx). Synthetic methods to create asymmetric selenenyl sulfides with high regiochemical purity only emerged over the last five years; this functional group has already demonstrated powerful applications to cell biology, through probes for molecular imaging (e.
View Article and Find Full Text PDFOrg Lett
January 2025
School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, Xinjiang 832003, China.
A chiral phosphoric acid-catalyzed efficient, operationally simple, general method for straightforward syntheses of axially chiral arylpyrazole employing -alkyl of 3-aryl-5-aminopyrazoles reacting with azonaphthalenes was achieved. A wide variety of axially chiral heterobiaryl diamines in generally good yields with excellent enantioselectivities were obtained under mild conditions. In addition, a scaled-up experiment and postmodification of the chiral product further highlighted the synthetic utility.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, Henan 475004, PR China.
Recent advancements in green and sustainable platforms, particularly visible light-driven photocatalysis, have spurred significant progress in radical chemistry, enabling the efficient synthesis of important molecules from simple and readily available feedstocks under mild conditions. However, the rapid orbital flipping and high reactivity of radicals pose substantial challenges for achieving precise enantiocontrol in stereocenter formation via radical coupling. In this study, we present a generic and efficient strategy that modulates this elusive approach, facilitating enantiocontrollable protonation through 1,3-boron migration.
View Article and Find Full Text PDFChempluschem
January 2025
TU Dortmund: Technische Universitat Dortmund, Chemistry and Chemical Biology, Otto-Hahn-Str. 6, 44227, Dortmund, GERMANY.
Strategies for combining ionic and non-ionic functional groups are important for altering detergent properties and exploring new chemical spaces within the detergentome. Previous synthesis protocols for ionic/non-ionic hybrid detergents require asymmetric detergent precursors with independently addressable hydroxyl groups that can be decorated with charged groups. However, preparation of ionic/non-ionic headgroups can be tedious in terms of required synthesis steps and resource consumption.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Guangzhou University, Center for Advanced Analytical Science, c/o School of Chemistry and Chemical Engineering, 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou 510006 P, 510006, Guangzhou, CHINA.
The optimization of morphology in all-polymer solar cells (all-PSCs) often relies on the use of solvent additives. However, their tendency to remain trapped in the device due to high boiling points leads to performance degradation over time. In this study, we introduce a novel approach involving the design and synthesis of one dual-asymmetric solid additive featuring mono-brominated-asymmetric dithienothiophene (SL-1).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!